Step |
Hyp |
Ref |
Expression |
1 |
|
iccssioo2 |
⊢ ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
2 |
1
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 ) |
3 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
4 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) |
5 |
4
|
resconn |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ SConn ↔ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ Conn ) ) |
6 |
|
reconn |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ Conn ↔ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 ) ) ) |
7 |
5 6
|
bitr2d |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 ) ↔ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ SConn ) ) |
8 |
3 7
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 ) ↔ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ SConn ) |
9 |
2 8
|
mpbi |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ SConn |