Metamath Proof Explorer


Theorem ioosconn

Description: An open interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion ioosconn ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ SConn

Proof

Step Hyp Ref Expression
1 iccssioo2 ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 ) )
2 1 rgen2 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 )
3 ioossre ( 𝐴 (,) 𝐵 ) ⊆ ℝ
4 eqid ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) )
5 4 resconn ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ SConn ↔ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ Conn ) )
6 reconn ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ Conn ↔ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 ) ) )
7 5 6 bitr2d ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 ) ↔ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ SConn ) )
8 3 7 ax-mp ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 (,) 𝐵 ) ↔ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ SConn )
9 2 8 mpbi ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ SConn