Metamath Proof Explorer


Theorem ioosconn

Description: An open interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion ioosconn topGen ran . 𝑡 A B SConn

Proof

Step Hyp Ref Expression
1 iccssioo2 x A B y A B x y A B
2 1 rgen2 x A B y A B x y A B
3 ioossre A B
4 eqid topGen ran . 𝑡 A B = topGen ran . 𝑡 A B
5 4 resconn A B topGen ran . 𝑡 A B SConn topGen ran . 𝑡 A B Conn
6 reconn A B topGen ran . 𝑡 A B Conn x A B y A B x y A B
7 5 6 bitr2d A B x A B y A B x y A B topGen ran . 𝑡 A B SConn
8 3 7 ax-mp x A B y A B x y A B topGen ran . 𝑡 A B SConn
9 2 8 mpbi topGen ran . 𝑡 A B SConn