Metamath Proof Explorer


Theorem retopsconn

Description: The real numbers are simply connected. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion retopsconn
|- ( topGen ` ran (,) ) e. SConn

Proof

Step Hyp Ref Expression
1 retop
 |-  ( topGen ` ran (,) ) e. Top
2 ioomax
 |-  ( -oo (,) +oo ) = RR
3 uniretop
 |-  RR = U. ( topGen ` ran (,) )
4 2 3 eqtri
 |-  ( -oo (,) +oo ) = U. ( topGen ` ran (,) )
5 4 restid
 |-  ( ( topGen ` ran (,) ) e. Top -> ( ( topGen ` ran (,) ) |`t ( -oo (,) +oo ) ) = ( topGen ` ran (,) ) )
6 1 5 ax-mp
 |-  ( ( topGen ` ran (,) ) |`t ( -oo (,) +oo ) ) = ( topGen ` ran (,) )
7 ioosconn
 |-  ( ( topGen ` ran (,) ) |`t ( -oo (,) +oo ) ) e. SConn
8 6 7 eqeltrri
 |-  ( topGen ` ran (,) ) e. SConn