Metamath Proof Explorer


Theorem retopsconn

Description: The real numbers are simply connected. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion retopsconn ( topGen ‘ ran (,) ) ∈ SConn

Proof

Step Hyp Ref Expression
1 retop ( topGen ‘ ran (,) ) ∈ Top
2 ioomax ( -∞ (,) +∞ ) = ℝ
3 uniretop ℝ = ( topGen ‘ ran (,) )
4 2 3 eqtri ( -∞ (,) +∞ ) = ( topGen ‘ ran (,) )
5 4 restid ( ( topGen ‘ ran (,) ) ∈ Top → ( ( topGen ‘ ran (,) ) ↾t ( -∞ (,) +∞ ) ) = ( topGen ‘ ran (,) ) )
6 1 5 ax-mp ( ( topGen ‘ ran (,) ) ↾t ( -∞ (,) +∞ ) ) = ( topGen ‘ ran (,) )
7 ioosconn ( ( topGen ‘ ran (,) ) ↾t ( -∞ (,) +∞ ) ) ∈ SConn
8 6 7 eqeltrri ( topGen ‘ ran (,) ) ∈ SConn