Metamath Proof Explorer


Theorem iccllysconn

Description: A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Assertion iccllysconn ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Locally SConn )

Proof

Step Hyp Ref Expression
1 simprl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑥 ∈ ( topGen ‘ ran (,) ) )
2 inss1 ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥
3 simprr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) )
4 2 3 sseldi ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦𝑥 )
5 tg2 ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦𝑥 ) → ∃ 𝑧 ∈ ran (,) ( 𝑦𝑧𝑧𝑥 ) )
6 1 4 5 syl2anc ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ∃ 𝑧 ∈ ran (,) ( 𝑦𝑧𝑧𝑥 ) )
7 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
8 ffn ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) )
9 ovelrn ( (,) Fn ( ℝ* × ℝ* ) → ( 𝑧 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = ( 𝑎 (,) 𝑏 ) ) )
10 7 8 9 mp2b ( 𝑧 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = ( 𝑎 (,) 𝑏 ) )
11 inss1 ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑧
12 simprrr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → 𝑧𝑥 )
13 11 12 sstrid ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥 )
14 simprrl ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → 𝑦𝑧 )
15 simprl ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → 𝑧 = ( 𝑎 (,) 𝑏 ) )
16 15 ineq1d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) )
17 16 oveq2d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) )
18 ioosconn ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) ) ∈ SConn
19 ioossre ( 𝑎 (,) 𝑏 ) ⊆ ℝ
20 eqid ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) )
21 20 resconn ( ( 𝑎 (,) 𝑏 ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) ) ∈ SConn ↔ ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) ) ∈ Conn ) )
22 reconn ( ( 𝑎 (,) 𝑏 ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) ) ∈ Conn ↔ ∀ 𝑢 ∈ ( 𝑎 (,) 𝑏 ) ∀ 𝑣 ∈ ( 𝑎 (,) 𝑏 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ) )
23 21 22 bitrd ( ( 𝑎 (,) 𝑏 ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) ) ∈ SConn ↔ ∀ 𝑢 ∈ ( 𝑎 (,) 𝑏 ) ∀ 𝑣 ∈ ( 𝑎 (,) 𝑏 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ) )
24 19 23 ax-mp ( ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) ) ∈ SConn ↔ ∀ 𝑢 ∈ ( 𝑎 (,) 𝑏 ) ∀ 𝑣 ∈ ( 𝑎 (,) 𝑏 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) )
25 18 24 mpbi 𝑢 ∈ ( 𝑎 (,) 𝑏 ) ∀ 𝑣 ∈ ( 𝑎 (,) 𝑏 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 )
26 inss1 ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝑎 (,) 𝑏 )
27 ssralv ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝑎 (,) 𝑏 ) → ( ∀ 𝑣 ∈ ( 𝑎 (,) 𝑏 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) → ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ) )
28 27 ralimdv ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝑎 (,) 𝑏 ) → ( ∀ 𝑢 ∈ ( 𝑎 (,) 𝑏 ) ∀ 𝑣 ∈ ( 𝑎 (,) 𝑏 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) → ∀ 𝑢 ∈ ( 𝑎 (,) 𝑏 ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ) )
29 ssralv ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝑎 (,) 𝑏 ) → ( ∀ 𝑢 ∈ ( 𝑎 (,) 𝑏 ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) → ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ) )
30 28 29 syld ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝑎 (,) 𝑏 ) → ( ∀ 𝑢 ∈ ( 𝑎 (,) 𝑏 ) ∀ 𝑣 ∈ ( 𝑎 (,) 𝑏 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) → ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ) )
31 26 30 ax-mp ( ∀ 𝑢 ∈ ( 𝑎 (,) 𝑏 ) ∀ 𝑣 ∈ ( 𝑎 (,) 𝑏 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) → ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) )
32 25 31 mp1i ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) )
33 inss2 ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 )
34 iccconn ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn )
35 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
36 reconn ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ↔ ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) )
37 35 36 syl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ↔ ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) )
38 34 37 mpbid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) )
39 38 ad2antrr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) )
40 ssralv ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ∀ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) → ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) )
41 40 ralimdv ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) → ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) )
42 ssralv ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) → ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) )
43 41 42 syld ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) → ( ∀ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) → ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) )
44 33 39 43 mpsyl ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) )
45 ssin ( ( ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ∧ ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝑢 [,] 𝑣 ) ⊆ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) )
46 45 2ralbii ( ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ∧ ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ↔ ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) )
47 r19.26-2 ( ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ∧ ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ↔ ( ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ∧ ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) )
48 46 47 bitr3i ( ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝑎 (,) 𝑏 ) ∧ ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( 𝐴 [,] 𝐵 ) ) )
49 32 44 48 sylanbrc ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) )
50 26 19 sstri ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ
51 eqid ( ( topGen ‘ ran (,) ) ↾t ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) )
52 51 resconn ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ↔ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ Conn ) )
53 reconn ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ Conn ↔ ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) )
54 52 53 bitrd ( ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ↔ ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) )
55 50 54 ax-mp ( ( ( topGen ‘ ran (,) ) ↾t ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ↔ ∀ 𝑢 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ∀ 𝑣 ∈ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ( 𝑢 [,] 𝑣 ) ⊆ ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) )
56 49 55 sylibr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ( ( topGen ‘ ran (,) ) ↾t ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn )
57 17 56 eqeltrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn )
58 13 14 57 3jca ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) ∧ ( 𝑧 = ( 𝑎 (,) 𝑏 ) ∧ ( 𝑦𝑧𝑧𝑥 ) ) ) → ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) )
59 58 exp32 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑧 = ( 𝑎 (,) 𝑏 ) → ( ( 𝑦𝑧𝑧𝑥 ) → ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) ) ) )
60 59 rexlimdvw ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ∃ 𝑏 ∈ ℝ* 𝑧 = ( 𝑎 (,) 𝑏 ) → ( ( 𝑦𝑧𝑧𝑥 ) → ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) ) ) )
61 60 rexlimdvw ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ∃ 𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = ( 𝑎 (,) 𝑏 ) → ( ( 𝑦𝑧𝑧𝑥 ) → ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) ) ) )
62 10 61 syl5bi ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑧 ∈ ran (,) → ( ( 𝑦𝑧𝑧𝑥 ) → ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) ) ) )
63 62 reximdvai ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ∃ 𝑧 ∈ ran (,) ( 𝑦𝑧𝑧𝑥 ) → ∃ 𝑧 ∈ ran (,) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) ) )
64 retopbas ran (,) ∈ TopBases
65 bastg ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) )
66 ssrexv ( ran (,) ⊆ ( topGen ‘ ran (,) ) → ( ∃ 𝑧 ∈ ran (,) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) → ∃ 𝑧 ∈ ( topGen ‘ ran (,) ) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) ) )
67 64 65 66 mp2b ( ∃ 𝑧 ∈ ran (,) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) → ∃ 𝑧 ∈ ( topGen ‘ ran (,) ) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) )
68 63 67 syl6 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ∃ 𝑧 ∈ ran (,) ( 𝑦𝑧𝑧𝑥 ) → ∃ 𝑧 ∈ ( topGen ‘ ran (,) ) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) ) )
69 6 68 mpd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ∃ 𝑧 ∈ ( topGen ‘ ran (,) ) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) )
70 69 ralrimivva ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ∀ 𝑥 ∈ ( topGen ‘ ran (,) ) ∀ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ∃ 𝑧 ∈ ( topGen ‘ ran (,) ) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) )
71 retop ( topGen ‘ ran (,) ) ∈ Top
72 ovex ( 𝐴 [,] 𝐵 ) ∈ V
73 subislly ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Locally SConn ↔ ∀ 𝑥 ∈ ( topGen ‘ ran (,) ) ∀ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ∃ 𝑧 ∈ ( topGen ‘ ran (,) ) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) ) )
74 71 72 73 mp2an ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Locally SConn ↔ ∀ 𝑥 ∈ ( topGen ‘ ran (,) ) ∀ 𝑦 ∈ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ∃ 𝑧 ∈ ( topGen ‘ ran (,) ) ( ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ⊆ 𝑥𝑦𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∈ SConn ) )
75 70 74 sylibr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Locally SConn )