Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|
2 |
|
inss1 |
|
3 |
|
simprr |
|
4 |
2 3
|
sselid |
|
5 |
|
tg2 |
|
6 |
1 4 5
|
syl2anc |
|
7 |
|
ioof |
|
8 |
|
ffn |
|
9 |
|
ovelrn |
|
10 |
7 8 9
|
mp2b |
|
11 |
|
inss1 |
|
12 |
|
simprrr |
|
13 |
11 12
|
sstrid |
|
14 |
|
simprrl |
|
15 |
|
simprl |
|
16 |
15
|
ineq1d |
|
17 |
16
|
oveq2d |
|
18 |
|
ioosconn |
|
19 |
|
ioossre |
|
20 |
|
eqid |
|
21 |
20
|
resconn |
|
22 |
|
reconn |
|
23 |
21 22
|
bitrd |
|
24 |
19 23
|
ax-mp |
|
25 |
18 24
|
mpbi |
|
26 |
|
inss1 |
|
27 |
|
ssralv |
|
28 |
27
|
ralimdv |
|
29 |
|
ssralv |
|
30 |
28 29
|
syld |
|
31 |
26 30
|
ax-mp |
|
32 |
25 31
|
mp1i |
|
33 |
|
inss2 |
|
34 |
|
iccconn |
|
35 |
|
iccssre |
|
36 |
|
reconn |
|
37 |
35 36
|
syl |
|
38 |
34 37
|
mpbid |
|
39 |
38
|
ad2antrr |
|
40 |
|
ssralv |
|
41 |
40
|
ralimdv |
|
42 |
|
ssralv |
|
43 |
41 42
|
syld |
|
44 |
33 39 43
|
mpsyl |
|
45 |
|
ssin |
|
46 |
45
|
2ralbii |
|
47 |
|
r19.26-2 |
|
48 |
46 47
|
bitr3i |
|
49 |
32 44 48
|
sylanbrc |
|
50 |
26 19
|
sstri |
|
51 |
|
eqid |
|
52 |
51
|
resconn |
|
53 |
|
reconn |
|
54 |
52 53
|
bitrd |
|
55 |
50 54
|
ax-mp |
|
56 |
49 55
|
sylibr |
|
57 |
17 56
|
eqeltrd |
|
58 |
13 14 57
|
3jca |
|
59 |
58
|
exp32 |
|
60 |
59
|
rexlimdvw |
|
61 |
60
|
rexlimdvw |
|
62 |
10 61
|
syl5bi |
|
63 |
62
|
reximdvai |
|
64 |
|
retopbas |
|
65 |
|
bastg |
|
66 |
|
ssrexv |
|
67 |
64 65 66
|
mp2b |
|
68 |
63 67
|
syl6 |
|
69 |
6 68
|
mpd |
|
70 |
69
|
ralrimivva |
|
71 |
|
retop |
|
72 |
|
ovex |
|
73 |
|
subislly |
|
74 |
71 72 73
|
mp2an |
|
75 |
70 74
|
sylibr |
|