Metamath Proof Explorer


Theorem iccllysconn

Description: A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Assertion iccllysconn A B topGen ran . 𝑡 A B Locally SConn

Proof

Step Hyp Ref Expression
1 simprl A B x topGen ran . y x A B x topGen ran .
2 inss1 x A B x
3 simprr A B x topGen ran . y x A B y x A B
4 2 3 sselid A B x topGen ran . y x A B y x
5 tg2 x topGen ran . y x z ran . y z z x
6 1 4 5 syl2anc A B x topGen ran . y x A B z ran . y z z x
7 ioof . : * × * 𝒫
8 ffn . : * × * 𝒫 . Fn * × *
9 ovelrn . Fn * × * z ran . a * b * z = a b
10 7 8 9 mp2b z ran . a * b * z = a b
11 inss1 z A B z
12 simprrr A B x topGen ran . y x A B z = a b y z z x z x
13 11 12 sstrid A B x topGen ran . y x A B z = a b y z z x z A B x
14 simprrl A B x topGen ran . y x A B z = a b y z z x y z
15 simprl A B x topGen ran . y x A B z = a b y z z x z = a b
16 15 ineq1d A B x topGen ran . y x A B z = a b y z z x z A B = a b A B
17 16 oveq2d A B x topGen ran . y x A B z = a b y z z x topGen ran . 𝑡 z A B = topGen ran . 𝑡 a b A B
18 ioosconn topGen ran . 𝑡 a b SConn
19 ioossre a b
20 eqid topGen ran . 𝑡 a b = topGen ran . 𝑡 a b
21 20 resconn a b topGen ran . 𝑡 a b SConn topGen ran . 𝑡 a b Conn
22 reconn a b topGen ran . 𝑡 a b Conn u a b v a b u v a b
23 21 22 bitrd a b topGen ran . 𝑡 a b SConn u a b v a b u v a b
24 19 23 ax-mp topGen ran . 𝑡 a b SConn u a b v a b u v a b
25 18 24 mpbi u a b v a b u v a b
26 inss1 a b A B a b
27 ssralv a b A B a b v a b u v a b v a b A B u v a b
28 27 ralimdv a b A B a b u a b v a b u v a b u a b v a b A B u v a b
29 ssralv a b A B a b u a b v a b A B u v a b u a b A B v a b A B u v a b
30 28 29 syld a b A B a b u a b v a b u v a b u a b A B v a b A B u v a b
31 26 30 ax-mp u a b v a b u v a b u a b A B v a b A B u v a b
32 25 31 mp1i A B x topGen ran . y x A B z = a b y z z x u a b A B v a b A B u v a b
33 inss2 a b A B A B
34 iccconn A B topGen ran . 𝑡 A B Conn
35 iccssre A B A B
36 reconn A B topGen ran . 𝑡 A B Conn u A B v A B u v A B
37 35 36 syl A B topGen ran . 𝑡 A B Conn u A B v A B u v A B
38 34 37 mpbid A B u A B v A B u v A B
39 38 ad2antrr A B x topGen ran . y x A B z = a b y z z x u A B v A B u v A B
40 ssralv a b A B A B v A B u v A B v a b A B u v A B
41 40 ralimdv a b A B A B u A B v A B u v A B u A B v a b A B u v A B
42 ssralv a b A B A B u A B v a b A B u v A B u a b A B v a b A B u v A B
43 41 42 syld a b A B A B u A B v A B u v A B u a b A B v a b A B u v A B
44 33 39 43 mpsyl A B x topGen ran . y x A B z = a b y z z x u a b A B v a b A B u v A B
45 ssin u v a b u v A B u v a b A B
46 45 2ralbii u a b A B v a b A B u v a b u v A B u a b A B v a b A B u v a b A B
47 r19.26-2 u a b A B v a b A B u v a b u v A B u a b A B v a b A B u v a b u a b A B v a b A B u v A B
48 46 47 bitr3i u a b A B v a b A B u v a b A B u a b A B v a b A B u v a b u a b A B v a b A B u v A B
49 32 44 48 sylanbrc A B x topGen ran . y x A B z = a b y z z x u a b A B v a b A B u v a b A B
50 26 19 sstri a b A B
51 eqid topGen ran . 𝑡 a b A B = topGen ran . 𝑡 a b A B
52 51 resconn a b A B topGen ran . 𝑡 a b A B SConn topGen ran . 𝑡 a b A B Conn
53 reconn a b A B topGen ran . 𝑡 a b A B Conn u a b A B v a b A B u v a b A B
54 52 53 bitrd a b A B topGen ran . 𝑡 a b A B SConn u a b A B v a b A B u v a b A B
55 50 54 ax-mp topGen ran . 𝑡 a b A B SConn u a b A B v a b A B u v a b A B
56 49 55 sylibr A B x topGen ran . y x A B z = a b y z z x topGen ran . 𝑡 a b A B SConn
57 17 56 eqeltrd A B x topGen ran . y x A B z = a b y z z x topGen ran . 𝑡 z A B SConn
58 13 14 57 3jca A B x topGen ran . y x A B z = a b y z z x z A B x y z topGen ran . 𝑡 z A B SConn
59 58 exp32 A B x topGen ran . y x A B z = a b y z z x z A B x y z topGen ran . 𝑡 z A B SConn
60 59 rexlimdvw A B x topGen ran . y x A B b * z = a b y z z x z A B x y z topGen ran . 𝑡 z A B SConn
61 60 rexlimdvw A B x topGen ran . y x A B a * b * z = a b y z z x z A B x y z topGen ran . 𝑡 z A B SConn
62 10 61 syl5bi A B x topGen ran . y x A B z ran . y z z x z A B x y z topGen ran . 𝑡 z A B SConn
63 62 reximdvai A B x topGen ran . y x A B z ran . y z z x z ran . z A B x y z topGen ran . 𝑡 z A B SConn
64 retopbas ran . TopBases
65 bastg ran . TopBases ran . topGen ran .
66 ssrexv ran . topGen ran . z ran . z A B x y z topGen ran . 𝑡 z A B SConn z topGen ran . z A B x y z topGen ran . 𝑡 z A B SConn
67 64 65 66 mp2b z ran . z A B x y z topGen ran . 𝑡 z A B SConn z topGen ran . z A B x y z topGen ran . 𝑡 z A B SConn
68 63 67 syl6 A B x topGen ran . y x A B z ran . y z z x z topGen ran . z A B x y z topGen ran . 𝑡 z A B SConn
69 6 68 mpd A B x topGen ran . y x A B z topGen ran . z A B x y z topGen ran . 𝑡 z A B SConn
70 69 ralrimivva A B x topGen ran . y x A B z topGen ran . z A B x y z topGen ran . 𝑡 z A B SConn
71 retop topGen ran . Top
72 ovex A B V
73 subislly topGen ran . Top A B V topGen ran . 𝑡 A B Locally SConn x topGen ran . y x A B z topGen ran . z A B x y z topGen ran . 𝑡 z A B SConn
74 71 72 73 mp2an topGen ran . 𝑡 A B Locally SConn x topGen ran . y x A B z topGen ran . z A B x y z topGen ran . 𝑡 z A B SConn
75 70 74 sylibr A B topGen ran . 𝑡 A B Locally SConn