Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> x e. ( topGen ` ran (,) ) ) |
2 |
|
inss1 |
|- ( x i^i ( A [,] B ) ) C_ x |
3 |
|
simprr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> y e. ( x i^i ( A [,] B ) ) ) |
4 |
2 3
|
sselid |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> y e. x ) |
5 |
|
tg2 |
|- ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) -> E. z e. ran (,) ( y e. z /\ z C_ x ) ) |
6 |
1 4 5
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> E. z e. ran (,) ( y e. z /\ z C_ x ) ) |
7 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
8 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
9 |
|
ovelrn |
|- ( (,) Fn ( RR* X. RR* ) -> ( z e. ran (,) <-> E. a e. RR* E. b e. RR* z = ( a (,) b ) ) ) |
10 |
7 8 9
|
mp2b |
|- ( z e. ran (,) <-> E. a e. RR* E. b e. RR* z = ( a (,) b ) ) |
11 |
|
inss1 |
|- ( z i^i ( A [,] B ) ) C_ z |
12 |
|
simprrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> z C_ x ) |
13 |
11 12
|
sstrid |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> ( z i^i ( A [,] B ) ) C_ x ) |
14 |
|
simprrl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> y e. z ) |
15 |
|
simprl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> z = ( a (,) b ) ) |
16 |
15
|
ineq1d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> ( z i^i ( A [,] B ) ) = ( ( a (,) b ) i^i ( A [,] B ) ) ) |
17 |
16
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) = ( ( topGen ` ran (,) ) |`t ( ( a (,) b ) i^i ( A [,] B ) ) ) ) |
18 |
|
ioosconn |
|- ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) e. SConn |
19 |
|
ioossre |
|- ( a (,) b ) C_ RR |
20 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) = ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) |
21 |
20
|
resconn |
|- ( ( a (,) b ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) e. SConn <-> ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) e. Conn ) ) |
22 |
|
reconn |
|- ( ( a (,) b ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) e. Conn <-> A. u e. ( a (,) b ) A. v e. ( a (,) b ) ( u [,] v ) C_ ( a (,) b ) ) ) |
23 |
21 22
|
bitrd |
|- ( ( a (,) b ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) e. SConn <-> A. u e. ( a (,) b ) A. v e. ( a (,) b ) ( u [,] v ) C_ ( a (,) b ) ) ) |
24 |
19 23
|
ax-mp |
|- ( ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) e. SConn <-> A. u e. ( a (,) b ) A. v e. ( a (,) b ) ( u [,] v ) C_ ( a (,) b ) ) |
25 |
18 24
|
mpbi |
|- A. u e. ( a (,) b ) A. v e. ( a (,) b ) ( u [,] v ) C_ ( a (,) b ) |
26 |
|
inss1 |
|- ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( a (,) b ) |
27 |
|
ssralv |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( a (,) b ) -> ( A. v e. ( a (,) b ) ( u [,] v ) C_ ( a (,) b ) -> A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( a (,) b ) ) ) |
28 |
27
|
ralimdv |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( a (,) b ) -> ( A. u e. ( a (,) b ) A. v e. ( a (,) b ) ( u [,] v ) C_ ( a (,) b ) -> A. u e. ( a (,) b ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( a (,) b ) ) ) |
29 |
|
ssralv |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( a (,) b ) -> ( A. u e. ( a (,) b ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( a (,) b ) -> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( a (,) b ) ) ) |
30 |
28 29
|
syld |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( a (,) b ) -> ( A. u e. ( a (,) b ) A. v e. ( a (,) b ) ( u [,] v ) C_ ( a (,) b ) -> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( a (,) b ) ) ) |
31 |
26 30
|
ax-mp |
|- ( A. u e. ( a (,) b ) A. v e. ( a (,) b ) ( u [,] v ) C_ ( a (,) b ) -> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( a (,) b ) ) |
32 |
25 31
|
mp1i |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( a (,) b ) ) |
33 |
|
inss2 |
|- ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( A [,] B ) |
34 |
|
iccconn |
|- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) |
35 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
36 |
|
reconn |
|- ( ( A [,] B ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn <-> A. u e. ( A [,] B ) A. v e. ( A [,] B ) ( u [,] v ) C_ ( A [,] B ) ) ) |
37 |
35 36
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn <-> A. u e. ( A [,] B ) A. v e. ( A [,] B ) ( u [,] v ) C_ ( A [,] B ) ) ) |
38 |
34 37
|
mpbid |
|- ( ( A e. RR /\ B e. RR ) -> A. u e. ( A [,] B ) A. v e. ( A [,] B ) ( u [,] v ) C_ ( A [,] B ) ) |
39 |
38
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> A. u e. ( A [,] B ) A. v e. ( A [,] B ) ( u [,] v ) C_ ( A [,] B ) ) |
40 |
|
ssralv |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( A [,] B ) -> ( A. v e. ( A [,] B ) ( u [,] v ) C_ ( A [,] B ) -> A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( A [,] B ) ) ) |
41 |
40
|
ralimdv |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( A [,] B ) -> ( A. u e. ( A [,] B ) A. v e. ( A [,] B ) ( u [,] v ) C_ ( A [,] B ) -> A. u e. ( A [,] B ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( A [,] B ) ) ) |
42 |
|
ssralv |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( A [,] B ) -> ( A. u e. ( A [,] B ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( A [,] B ) -> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( A [,] B ) ) ) |
43 |
41 42
|
syld |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ ( A [,] B ) -> ( A. u e. ( A [,] B ) A. v e. ( A [,] B ) ( u [,] v ) C_ ( A [,] B ) -> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( A [,] B ) ) ) |
44 |
33 39 43
|
mpsyl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( A [,] B ) ) |
45 |
|
ssin |
|- ( ( ( u [,] v ) C_ ( a (,) b ) /\ ( u [,] v ) C_ ( A [,] B ) ) <-> ( u [,] v ) C_ ( ( a (,) b ) i^i ( A [,] B ) ) ) |
46 |
45
|
2ralbii |
|- ( A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( ( u [,] v ) C_ ( a (,) b ) /\ ( u [,] v ) C_ ( A [,] B ) ) <-> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( ( a (,) b ) i^i ( A [,] B ) ) ) |
47 |
|
r19.26-2 |
|- ( A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( ( u [,] v ) C_ ( a (,) b ) /\ ( u [,] v ) C_ ( A [,] B ) ) <-> ( A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( a (,) b ) /\ A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( A [,] B ) ) ) |
48 |
46 47
|
bitr3i |
|- ( A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( ( a (,) b ) i^i ( A [,] B ) ) <-> ( A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( a (,) b ) /\ A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( A [,] B ) ) ) |
49 |
32 44 48
|
sylanbrc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( ( a (,) b ) i^i ( A [,] B ) ) ) |
50 |
26 19
|
sstri |
|- ( ( a (,) b ) i^i ( A [,] B ) ) C_ RR |
51 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( ( a (,) b ) i^i ( A [,] B ) ) ) = ( ( topGen ` ran (,) ) |`t ( ( a (,) b ) i^i ( A [,] B ) ) ) |
52 |
51
|
resconn |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( ( a (,) b ) i^i ( A [,] B ) ) ) e. SConn <-> ( ( topGen ` ran (,) ) |`t ( ( a (,) b ) i^i ( A [,] B ) ) ) e. Conn ) ) |
53 |
|
reconn |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( ( a (,) b ) i^i ( A [,] B ) ) ) e. Conn <-> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( ( a (,) b ) i^i ( A [,] B ) ) ) ) |
54 |
52 53
|
bitrd |
|- ( ( ( a (,) b ) i^i ( A [,] B ) ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( ( a (,) b ) i^i ( A [,] B ) ) ) e. SConn <-> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( ( a (,) b ) i^i ( A [,] B ) ) ) ) |
55 |
50 54
|
ax-mp |
|- ( ( ( topGen ` ran (,) ) |`t ( ( a (,) b ) i^i ( A [,] B ) ) ) e. SConn <-> A. u e. ( ( a (,) b ) i^i ( A [,] B ) ) A. v e. ( ( a (,) b ) i^i ( A [,] B ) ) ( u [,] v ) C_ ( ( a (,) b ) i^i ( A [,] B ) ) ) |
56 |
49 55
|
sylibr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> ( ( topGen ` ran (,) ) |`t ( ( a (,) b ) i^i ( A [,] B ) ) ) e. SConn ) |
57 |
17 56
|
eqeltrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) |
58 |
13 14 57
|
3jca |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) /\ ( z = ( a (,) b ) /\ ( y e. z /\ z C_ x ) ) ) -> ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) |
59 |
58
|
exp32 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> ( z = ( a (,) b ) -> ( ( y e. z /\ z C_ x ) -> ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) ) ) |
60 |
59
|
rexlimdvw |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> ( E. b e. RR* z = ( a (,) b ) -> ( ( y e. z /\ z C_ x ) -> ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) ) ) |
61 |
60
|
rexlimdvw |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> ( E. a e. RR* E. b e. RR* z = ( a (,) b ) -> ( ( y e. z /\ z C_ x ) -> ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) ) ) |
62 |
10 61
|
syl5bi |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> ( z e. ran (,) -> ( ( y e. z /\ z C_ x ) -> ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) ) ) |
63 |
62
|
reximdvai |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> ( E. z e. ran (,) ( y e. z /\ z C_ x ) -> E. z e. ran (,) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) ) |
64 |
|
retopbas |
|- ran (,) e. TopBases |
65 |
|
bastg |
|- ( ran (,) e. TopBases -> ran (,) C_ ( topGen ` ran (,) ) ) |
66 |
|
ssrexv |
|- ( ran (,) C_ ( topGen ` ran (,) ) -> ( E. z e. ran (,) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) -> E. z e. ( topGen ` ran (,) ) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) ) |
67 |
64 65 66
|
mp2b |
|- ( E. z e. ran (,) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) -> E. z e. ( topGen ` ran (,) ) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) |
68 |
63 67
|
syl6 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> ( E. z e. ran (,) ( y e. z /\ z C_ x ) -> E. z e. ( topGen ` ran (,) ) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) ) |
69 |
6 68
|
mpd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( x e. ( topGen ` ran (,) ) /\ y e. ( x i^i ( A [,] B ) ) ) ) -> E. z e. ( topGen ` ran (,) ) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) |
70 |
69
|
ralrimivva |
|- ( ( A e. RR /\ B e. RR ) -> A. x e. ( topGen ` ran (,) ) A. y e. ( x i^i ( A [,] B ) ) E. z e. ( topGen ` ran (,) ) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) |
71 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
72 |
|
ovex |
|- ( A [,] B ) e. _V |
73 |
|
subislly |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) e. _V ) -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Locally SConn <-> A. x e. ( topGen ` ran (,) ) A. y e. ( x i^i ( A [,] B ) ) E. z e. ( topGen ` ran (,) ) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) ) |
74 |
71 72 73
|
mp2an |
|- ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Locally SConn <-> A. x e. ( topGen ` ran (,) ) A. y e. ( x i^i ( A [,] B ) ) E. z e. ( topGen ` ran (,) ) ( ( z i^i ( A [,] B ) ) C_ x /\ y e. z /\ ( ( topGen ` ran (,) ) |`t ( z i^i ( A [,] B ) ) ) e. SConn ) ) |
75 |
70 74
|
sylibr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Locally SConn ) |