Step |
Hyp |
Ref |
Expression |
1 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
2 |
|
tg2 |
|- ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) -> E. z e. ran (,) ( y e. z /\ z C_ x ) ) |
3 |
|
retopbas |
|- ran (,) e. TopBases |
4 |
|
bastg |
|- ( ran (,) e. TopBases -> ran (,) C_ ( topGen ` ran (,) ) ) |
5 |
3 4
|
ax-mp |
|- ran (,) C_ ( topGen ` ran (,) ) |
6 |
|
simprl |
|- ( ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) /\ ( z e. ran (,) /\ ( y e. z /\ z C_ x ) ) ) -> z e. ran (,) ) |
7 |
5 6
|
sselid |
|- ( ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) /\ ( z e. ran (,) /\ ( y e. z /\ z C_ x ) ) ) -> z e. ( topGen ` ran (,) ) ) |
8 |
|
simprrr |
|- ( ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) /\ ( z e. ran (,) /\ ( y e. z /\ z C_ x ) ) ) -> z C_ x ) |
9 |
|
velpw |
|- ( z e. ~P x <-> z C_ x ) |
10 |
8 9
|
sylibr |
|- ( ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) /\ ( z e. ran (,) /\ ( y e. z /\ z C_ x ) ) ) -> z e. ~P x ) |
11 |
7 10
|
elind |
|- ( ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) /\ ( z e. ran (,) /\ ( y e. z /\ z C_ x ) ) ) -> z e. ( ( topGen ` ran (,) ) i^i ~P x ) ) |
12 |
|
simprrl |
|- ( ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) /\ ( z e. ran (,) /\ ( y e. z /\ z C_ x ) ) ) -> y e. z ) |
13 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
14 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
15 |
|
ovelrn |
|- ( (,) Fn ( RR* X. RR* ) -> ( z e. ran (,) <-> E. a e. RR* E. b e. RR* z = ( a (,) b ) ) ) |
16 |
13 14 15
|
mp2b |
|- ( z e. ran (,) <-> E. a e. RR* E. b e. RR* z = ( a (,) b ) ) |
17 |
|
oveq2 |
|- ( z = ( a (,) b ) -> ( ( topGen ` ran (,) ) |`t z ) = ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) ) |
18 |
|
ioosconn |
|- ( ( topGen ` ran (,) ) |`t ( a (,) b ) ) e. SConn |
19 |
17 18
|
eqeltrdi |
|- ( z = ( a (,) b ) -> ( ( topGen ` ran (,) ) |`t z ) e. SConn ) |
20 |
19
|
rexlimivw |
|- ( E. b e. RR* z = ( a (,) b ) -> ( ( topGen ` ran (,) ) |`t z ) e. SConn ) |
21 |
20
|
rexlimivw |
|- ( E. a e. RR* E. b e. RR* z = ( a (,) b ) -> ( ( topGen ` ran (,) ) |`t z ) e. SConn ) |
22 |
16 21
|
sylbi |
|- ( z e. ran (,) -> ( ( topGen ` ran (,) ) |`t z ) e. SConn ) |
23 |
22
|
ad2antrl |
|- ( ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) /\ ( z e. ran (,) /\ ( y e. z /\ z C_ x ) ) ) -> ( ( topGen ` ran (,) ) |`t z ) e. SConn ) |
24 |
11 12 23
|
jca32 |
|- ( ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) /\ ( z e. ran (,) /\ ( y e. z /\ z C_ x ) ) ) -> ( z e. ( ( topGen ` ran (,) ) i^i ~P x ) /\ ( y e. z /\ ( ( topGen ` ran (,) ) |`t z ) e. SConn ) ) ) |
25 |
24
|
ex |
|- ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) -> ( ( z e. ran (,) /\ ( y e. z /\ z C_ x ) ) -> ( z e. ( ( topGen ` ran (,) ) i^i ~P x ) /\ ( y e. z /\ ( ( topGen ` ran (,) ) |`t z ) e. SConn ) ) ) ) |
26 |
25
|
reximdv2 |
|- ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) -> ( E. z e. ran (,) ( y e. z /\ z C_ x ) -> E. z e. ( ( topGen ` ran (,) ) i^i ~P x ) ( y e. z /\ ( ( topGen ` ran (,) ) |`t z ) e. SConn ) ) ) |
27 |
2 26
|
mpd |
|- ( ( x e. ( topGen ` ran (,) ) /\ y e. x ) -> E. z e. ( ( topGen ` ran (,) ) i^i ~P x ) ( y e. z /\ ( ( topGen ` ran (,) ) |`t z ) e. SConn ) ) |
28 |
27
|
rgen2 |
|- A. x e. ( topGen ` ran (,) ) A. y e. x E. z e. ( ( topGen ` ran (,) ) i^i ~P x ) ( y e. z /\ ( ( topGen ` ran (,) ) |`t z ) e. SConn ) |
29 |
|
islly |
|- ( ( topGen ` ran (,) ) e. Locally SConn <-> ( ( topGen ` ran (,) ) e. Top /\ A. x e. ( topGen ` ran (,) ) A. y e. x E. z e. ( ( topGen ` ran (,) ) i^i ~P x ) ( y e. z /\ ( ( topGen ` ran (,) ) |`t z ) e. SConn ) ) ) |
30 |
1 28 29
|
mpbir2an |
|- ( topGen ` ran (,) ) e. Locally SConn |