Metamath Proof Explorer


Theorem iisconn

Description: The unit interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion iisconn
|- II e. SConn

Proof

Step Hyp Ref Expression
1 dfii2
 |-  II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) )
2 0re
 |-  0 e. RR
3 1re
 |-  1 e. RR
4 iccsconn
 |-  ( ( 0 e. RR /\ 1 e. RR ) -> ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) e. SConn )
5 2 3 4 mp2an
 |-  ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) e. SConn
6 1 5 eqeltri
 |-  II e. SConn