Step |
Hyp |
Ref |
Expression |
1 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
2 |
|
tg2 |
⊢ ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ ran (,) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) |
3 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
4 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
5 |
3 4
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
6 |
|
simprl |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ran (,) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) → 𝑧 ∈ ran (,) ) |
7 |
5 6
|
sselid |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ran (,) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) → 𝑧 ∈ ( topGen ‘ ran (,) ) ) |
8 |
|
simprrr |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ran (,) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) → 𝑧 ⊆ 𝑥 ) |
9 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 𝑥 ↔ 𝑧 ⊆ 𝑥 ) |
10 |
8 9
|
sylibr |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ran (,) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) → 𝑧 ∈ 𝒫 𝑥 ) |
11 |
7 10
|
elind |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ran (,) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) → 𝑧 ∈ ( ( topGen ‘ ran (,) ) ∩ 𝒫 𝑥 ) ) |
12 |
|
simprrl |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ran (,) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) → 𝑦 ∈ 𝑧 ) |
13 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
14 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
15 |
|
ovelrn |
⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝑧 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑧 = ( 𝑎 (,) 𝑏 ) ) ) |
16 |
13 14 15
|
mp2b |
⊢ ( 𝑧 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑧 = ( 𝑎 (,) 𝑏 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑎 (,) 𝑏 ) → ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) ) ) |
18 |
|
ioosconn |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝑎 (,) 𝑏 ) ) ∈ SConn |
19 |
17 18
|
eqeltrdi |
⊢ ( 𝑧 = ( 𝑎 (,) 𝑏 ) → ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) |
20 |
19
|
rexlimivw |
⊢ ( ∃ 𝑏 ∈ ℝ* 𝑧 = ( 𝑎 (,) 𝑏 ) → ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) |
21 |
20
|
rexlimivw |
⊢ ( ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑧 = ( 𝑎 (,) 𝑏 ) → ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) |
22 |
16 21
|
sylbi |
⊢ ( 𝑧 ∈ ran (,) → ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) |
23 |
22
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ran (,) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) → ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) |
24 |
11 12 23
|
jca32 |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ran (,) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) → ( 𝑧 ∈ ( ( topGen ‘ ran (,) ) ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ 𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) ) ) |
25 |
24
|
ex |
⊢ ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑧 ∈ ran (,) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) → ( 𝑧 ∈ ( ( topGen ‘ ran (,) ) ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ 𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) ) ) ) |
26 |
25
|
reximdv2 |
⊢ ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ ran (,) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) → ∃ 𝑧 ∈ ( ( topGen ‘ ran (,) ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) ) ) |
27 |
2 26
|
mpd |
⊢ ( ( 𝑥 ∈ ( topGen ‘ ran (,) ) ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑧 ∈ ( ( topGen ‘ ran (,) ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) ) |
28 |
27
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( topGen ‘ ran (,) ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( topGen ‘ ran (,) ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) |
29 |
|
islly |
⊢ ( ( topGen ‘ ran (,) ) ∈ Locally SConn ↔ ( ( topGen ‘ ran (,) ) ∈ Top ∧ ∀ 𝑥 ∈ ( topGen ‘ ran (,) ) ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( ( topGen ‘ ran (,) ) ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑧 ∧ ( ( topGen ‘ ran (,) ) ↾t 𝑧 ) ∈ SConn ) ) ) |
30 |
1 28 29
|
mpbir2an |
⊢ ( topGen ‘ ran (,) ) ∈ Locally SConn |