Metamath Proof Explorer


Theorem islly

Description: The property of being a locally A topological space. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion islly ( 𝐽 ∈ Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐽𝑦𝑥𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝐽t 𝑢 ) ∈ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ineq1 ( 𝑗 = 𝐽 → ( 𝑗 ∩ 𝒫 𝑥 ) = ( 𝐽 ∩ 𝒫 𝑥 ) )
2 oveq1 ( 𝑗 = 𝐽 → ( 𝑗t 𝑢 ) = ( 𝐽t 𝑢 ) )
3 2 eleq1d ( 𝑗 = 𝐽 → ( ( 𝑗t 𝑢 ) ∈ 𝐴 ↔ ( 𝐽t 𝑢 ) ∈ 𝐴 ) )
4 3 anbi2d ( 𝑗 = 𝐽 → ( ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) ↔ ( 𝑦𝑢 ∧ ( 𝐽t 𝑢 ) ∈ 𝐴 ) ) )
5 1 4 rexeqbidv ( 𝑗 = 𝐽 → ( ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) ↔ ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝐽t 𝑢 ) ∈ 𝐴 ) ) )
6 5 ralbidv ( 𝑗 = 𝐽 → ( ∀ 𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) ↔ ∀ 𝑦𝑥𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝐽t 𝑢 ) ∈ 𝐴 ) ) )
7 6 raleqbi1dv ( 𝑗 = 𝐽 → ( ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) ↔ ∀ 𝑥𝐽𝑦𝑥𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝐽t 𝑢 ) ∈ 𝐴 ) ) )
8 df-lly Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) }
9 7 8 elrab2 ( 𝐽 ∈ Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐽𝑦𝑥𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝐽t 𝑢 ) ∈ 𝐴 ) ) )