Metamath Proof Explorer


Theorem ich2ex

Description: Two setvar variables are always interchangeable when there are two existential quantifiers. (Contributed by SN, 23-Nov-2023)

Ref Expression
Assertion ich2ex
|- [ x <> y ] E. x E. y ph

Proof

Step Hyp Ref Expression
1 nfe1
 |-  F/ x E. x E. y ph
2 excom
 |-  ( E. x E. y ph <-> E. y E. x ph )
3 nfe1
 |-  F/ y E. y E. x ph
4 2 3 nfxfr
 |-  F/ y E. x E. y ph
5 1 4 ichf
 |-  [ x <> y ] E. x E. y ph