Step |
Hyp |
Ref |
Expression |
1 |
|
ichf.1 |
|- F/ x ph |
2 |
|
ichf.2 |
|- F/ y ph |
3 |
2
|
sbf |
|- ( [ a / y ] ph <-> ph ) |
4 |
3
|
sbbii |
|- ( [ y / x ] [ a / y ] ph <-> [ y / x ] ph ) |
5 |
1
|
sbf |
|- ( [ y / x ] ph <-> ph ) |
6 |
4 5
|
bitri |
|- ( [ y / x ] [ a / y ] ph <-> ph ) |
7 |
6
|
sbbii |
|- ( [ x / a ] [ y / x ] [ a / y ] ph <-> [ x / a ] ph ) |
8 |
|
sbv |
|- ( [ x / a ] ph <-> ph ) |
9 |
7 8
|
bitri |
|- ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) |
10 |
9
|
gen2 |
|- A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) |
11 |
|
df-ich |
|- ( [ x <> y ] ph <-> A. x A. y ( [ x / a ] [ y / x ] [ a / y ] ph <-> ph ) ) |
12 |
10 11
|
mpbir |
|- [ x <> y ] ph |