Metamath Proof Explorer


Theorem ichid

Description: A setvar variable is always interchangeable with itself. (Contributed by AV, 29-Jul-2023)

Ref Expression
Assertion ichid
|- [ x <> x ] ph

Proof

Step Hyp Ref Expression
1 sbid
 |-  ( [ x / x ] [ a / x ] ph <-> [ a / x ] ph )
2 1 sbbii
 |-  ( [ x / a ] [ x / x ] [ a / x ] ph <-> [ x / a ] [ a / x ] ph )
3 sbid2vw
 |-  ( [ x / a ] [ a / x ] ph <-> ph )
4 2 3 bitri
 |-  ( [ x / a ] [ x / x ] [ a / x ] ph <-> ph )
5 4 gen2
 |-  A. x A. x ( [ x / a ] [ x / x ] [ a / x ] ph <-> ph )
6 df-ich
 |-  ( [ x <> x ] ph <-> A. x A. x ( [ x / a ] [ x / x ] [ a / x ] ph <-> ph ) )
7 5 6 mpbir
 |-  [ x <> x ] ph