| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ichf.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | ichf.2 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 3 | 2 | sbf | ⊢ ( [ 𝑎  /  𝑦 ] 𝜑  ↔  𝜑 ) | 
						
							| 4 | 3 | sbbii | ⊢ ( [ 𝑦  /  𝑥 ] [ 𝑎  /  𝑦 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 5 | 1 | sbf | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜑 ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( [ 𝑦  /  𝑥 ] [ 𝑎  /  𝑦 ] 𝜑  ↔  𝜑 ) | 
						
							| 7 | 6 | sbbii | ⊢ ( [ 𝑥  /  𝑎 ] [ 𝑦  /  𝑥 ] [ 𝑎  /  𝑦 ] 𝜑  ↔  [ 𝑥  /  𝑎 ] 𝜑 ) | 
						
							| 8 |  | sbv | ⊢ ( [ 𝑥  /  𝑎 ] 𝜑  ↔  𝜑 ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( [ 𝑥  /  𝑎 ] [ 𝑦  /  𝑥 ] [ 𝑎  /  𝑦 ] 𝜑  ↔  𝜑 ) | 
						
							| 10 | 9 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( [ 𝑥  /  𝑎 ] [ 𝑦  /  𝑥 ] [ 𝑎  /  𝑦 ] 𝜑  ↔  𝜑 ) | 
						
							| 11 |  | df-ich | ⊢ ( [ 𝑥 ⇄ 𝑦 ] 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 ( [ 𝑥  /  𝑎 ] [ 𝑦  /  𝑥 ] [ 𝑎  /  𝑦 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 12 | 10 11 | mpbir | ⊢ [ 𝑥 ⇄ 𝑦 ] 𝜑 |