Metamath Proof Explorer


Theorem idacd

Description: Codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i
|- I = ( IdA ` C )
idafval.b
|- B = ( Base ` C )
idafval.c
|- ( ph -> C e. Cat )
idahom.x
|- ( ph -> X e. B )
Assertion idacd
|- ( ph -> ( codA ` ( I ` X ) ) = X )

Proof

Step Hyp Ref Expression
1 idafval.i
 |-  I = ( IdA ` C )
2 idafval.b
 |-  B = ( Base ` C )
3 idafval.c
 |-  ( ph -> C e. Cat )
4 idahom.x
 |-  ( ph -> X e. B )
5 eqid
 |-  ( HomA ` C ) = ( HomA ` C )
6 1 2 3 4 5 idahom
 |-  ( ph -> ( I ` X ) e. ( X ( HomA ` C ) X ) )
7 5 homacd
 |-  ( ( I ` X ) e. ( X ( HomA ` C ) X ) -> ( codA ` ( I ` X ) ) = X )
8 6 7 syl
 |-  ( ph -> ( codA ` ( I ` X ) ) = X )