Description: Codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idafval.i | |- I = ( IdA ` C ) | |
| idafval.b | |- B = ( Base ` C ) | ||
| idafval.c | |- ( ph -> C e. Cat ) | ||
| idahom.x | |- ( ph -> X e. B ) | ||
| Assertion | idacd | |- ( ph -> ( codA ` ( I ` X ) ) = X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | idafval.i | |- I = ( IdA ` C ) | |
| 2 | idafval.b | |- B = ( Base ` C ) | |
| 3 | idafval.c | |- ( ph -> C e. Cat ) | |
| 4 | idahom.x | |- ( ph -> X e. B ) | |
| 5 | eqid | |- ( HomA ` C ) = ( HomA ` C ) | |
| 6 | 1 2 3 4 5 | idahom | |- ( ph -> ( I ` X ) e. ( X ( HomA ` C ) X ) ) | 
| 7 | 5 | homacd | |- ( ( I ` X ) e. ( X ( HomA ` C ) X ) -> ( codA ` ( I ` X ) ) = X ) | 
| 8 | 6 7 | syl | |- ( ph -> ( codA ` ( I ` X ) ) = X ) |