Description: Codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idafval.i | |- I = ( IdA ` C ) |
|
idafval.b | |- B = ( Base ` C ) |
||
idafval.c | |- ( ph -> C e. Cat ) |
||
idahom.x | |- ( ph -> X e. B ) |
||
Assertion | idacd | |- ( ph -> ( codA ` ( I ` X ) ) = X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | |- I = ( IdA ` C ) |
|
2 | idafval.b | |- B = ( Base ` C ) |
|
3 | idafval.c | |- ( ph -> C e. Cat ) |
|
4 | idahom.x | |- ( ph -> X e. B ) |
|
5 | eqid | |- ( HomA ` C ) = ( HomA ` C ) |
|
6 | 1 2 3 4 5 | idahom | |- ( ph -> ( I ` X ) e. ( X ( HomA ` C ) X ) ) |
7 | 5 | homacd | |- ( ( I ` X ) e. ( X ( HomA ` C ) X ) -> ( codA ` ( I ` X ) ) = X ) |
8 | 6 7 | syl | |- ( ph -> ( codA ` ( I ` X ) ) = X ) |