| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idafval.i |
|- I = ( IdA ` C ) |
| 2 |
|
idafval.b |
|- B = ( Base ` C ) |
| 3 |
|
idafval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
idaf.a |
|- A = ( Arrow ` C ) |
| 5 |
|
otex |
|- <. x , x , ( ( Id ` C ) ` x ) >. e. _V |
| 6 |
5
|
a1i |
|- ( ( ph /\ x e. B ) -> <. x , x , ( ( Id ` C ) ` x ) >. e. _V ) |
| 7 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 8 |
1 2 3 7
|
idafval |
|- ( ph -> I = ( x e. B |-> <. x , x , ( ( Id ` C ) ` x ) >. ) ) |
| 9 |
|
eqid |
|- ( HomA ` C ) = ( HomA ` C ) |
| 10 |
4 9
|
homarw |
|- ( x ( HomA ` C ) x ) C_ A |
| 11 |
3
|
adantr |
|- ( ( ph /\ x e. B ) -> C e. Cat ) |
| 12 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 13 |
1 2 11 12 9
|
idahom |
|- ( ( ph /\ x e. B ) -> ( I ` x ) e. ( x ( HomA ` C ) x ) ) |
| 14 |
10 13
|
sselid |
|- ( ( ph /\ x e. B ) -> ( I ` x ) e. A ) |
| 15 |
6 8 14
|
fmpt2d |
|- ( ph -> I : B --> A ) |