| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idafval.i |  |-  I = ( IdA ` C ) | 
						
							| 2 |  | idafval.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | idafval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 4 |  | idaf.a |  |-  A = ( Arrow ` C ) | 
						
							| 5 |  | otex |  |-  <. x , x , ( ( Id ` C ) ` x ) >. e. _V | 
						
							| 6 | 5 | a1i |  |-  ( ( ph /\ x e. B ) -> <. x , x , ( ( Id ` C ) ` x ) >. e. _V ) | 
						
							| 7 |  | eqid |  |-  ( Id ` C ) = ( Id ` C ) | 
						
							| 8 | 1 2 3 7 | idafval |  |-  ( ph -> I = ( x e. B |-> <. x , x , ( ( Id ` C ) ` x ) >. ) ) | 
						
							| 9 |  | eqid |  |-  ( HomA ` C ) = ( HomA ` C ) | 
						
							| 10 | 4 9 | homarw |  |-  ( x ( HomA ` C ) x ) C_ A | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ x e. B ) -> C e. Cat ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 13 | 1 2 11 12 9 | idahom |  |-  ( ( ph /\ x e. B ) -> ( I ` x ) e. ( x ( HomA ` C ) x ) ) | 
						
							| 14 | 10 13 | sselid |  |-  ( ( ph /\ x e. B ) -> ( I ` x ) e. A ) | 
						
							| 15 | 6 8 14 | fmpt2d |  |-  ( ph -> I : B --> A ) |