Metamath Proof Explorer


Theorem idaf

Description: The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i
|- I = ( IdA ` C )
idafval.b
|- B = ( Base ` C )
idafval.c
|- ( ph -> C e. Cat )
idaf.a
|- A = ( Arrow ` C )
Assertion idaf
|- ( ph -> I : B --> A )

Proof

Step Hyp Ref Expression
1 idafval.i
 |-  I = ( IdA ` C )
2 idafval.b
 |-  B = ( Base ` C )
3 idafval.c
 |-  ( ph -> C e. Cat )
4 idaf.a
 |-  A = ( Arrow ` C )
5 otex
 |-  <. x , x , ( ( Id ` C ) ` x ) >. e. _V
6 5 a1i
 |-  ( ( ph /\ x e. B ) -> <. x , x , ( ( Id ` C ) ` x ) >. e. _V )
7 eqid
 |-  ( Id ` C ) = ( Id ` C )
8 1 2 3 7 idafval
 |-  ( ph -> I = ( x e. B |-> <. x , x , ( ( Id ` C ) ` x ) >. ) )
9 eqid
 |-  ( HomA ` C ) = ( HomA ` C )
10 4 9 homarw
 |-  ( x ( HomA ` C ) x ) C_ A
11 3 adantr
 |-  ( ( ph /\ x e. B ) -> C e. Cat )
12 simpr
 |-  ( ( ph /\ x e. B ) -> x e. B )
13 1 2 11 12 9 idahom
 |-  ( ( ph /\ x e. B ) -> ( I ` x ) e. ( x ( HomA ` C ) x ) )
14 10 13 sseldi
 |-  ( ( ph /\ x e. B ) -> ( I ` x ) e. A )
15 6 8 14 fmpt2d
 |-  ( ph -> I : B --> A )