Step |
Hyp |
Ref |
Expression |
1 |
|
coafval.o |
|- .x. = ( compA ` C ) |
2 |
|
coafval.a |
|- A = ( Arrow ` C ) |
3 |
|
coafval.x |
|- .xb = ( comp ` C ) |
4 |
|
fveq2 |
|- ( c = C -> ( Arrow ` c ) = ( Arrow ` C ) ) |
5 |
4 2
|
eqtr4di |
|- ( c = C -> ( Arrow ` c ) = A ) |
6 |
5
|
rabeqdv |
|- ( c = C -> { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } = { h e. A | ( codA ` h ) = ( domA ` g ) } ) |
7 |
|
fveq2 |
|- ( c = C -> ( comp ` c ) = ( comp ` C ) ) |
8 |
7 3
|
eqtr4di |
|- ( c = C -> ( comp ` c ) = .xb ) |
9 |
8
|
oveqd |
|- ( c = C -> ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) = ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ) |
10 |
9
|
oveqd |
|- ( c = C -> ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) = ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) ) |
11 |
10
|
oteq3d |
|- ( c = C -> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. = <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) |
12 |
5 6 11
|
mpoeq123dv |
|- ( c = C -> ( g e. ( Arrow ` c ) , f e. { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) = ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) ) |
13 |
|
df-coa |
|- compA = ( c e. Cat |-> ( g e. ( Arrow ` c ) , f e. { h e. ( Arrow ` c ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` c ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) ) |
14 |
2
|
fvexi |
|- A e. _V |
15 |
14
|
rabex |
|- { h e. A | ( codA ` h ) = ( domA ` g ) } e. _V |
16 |
14 15
|
mpoex |
|- ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) e. _V |
17 |
12 13 16
|
fvmpt |
|- ( C e. Cat -> ( compA ` C ) = ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) ) |
18 |
13
|
fvmptndm |
|- ( -. C e. Cat -> ( compA ` C ) = (/) ) |
19 |
2
|
arwrcl |
|- ( f e. A -> C e. Cat ) |
20 |
19
|
con3i |
|- ( -. C e. Cat -> -. f e. A ) |
21 |
20
|
eq0rdv |
|- ( -. C e. Cat -> A = (/) ) |
22 |
|
eqidd |
|- ( -. C e. Cat -> { h e. A | ( codA ` h ) = ( domA ` g ) } = { h e. A | ( codA ` h ) = ( domA ` g ) } ) |
23 |
|
eqidd |
|- ( -. C e. Cat -> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. = <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) |
24 |
21 22 23
|
mpoeq123dv |
|- ( -. C e. Cat -> ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) = ( g e. (/) , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) ) |
25 |
|
mpo0 |
|- ( g e. (/) , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) = (/) |
26 |
24 25
|
eqtrdi |
|- ( -. C e. Cat -> ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) = (/) ) |
27 |
18 26
|
eqtr4d |
|- ( -. C e. Cat -> ( compA ` C ) = ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) ) |
28 |
17 27
|
pm2.61i |
|- ( compA ` C ) = ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) |
29 |
1 28
|
eqtri |
|- .x. = ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) |