| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coafval.o |  |-  .x. = ( compA ` C ) | 
						
							| 2 |  | coafval.a |  |-  A = ( Arrow ` C ) | 
						
							| 3 |  | df-br |  |-  ( G dom .x. F <-> <. G , F >. e. dom .x. ) | 
						
							| 4 |  | otex |  |-  <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` C ) ( codA ` g ) ) ( 2nd ` f ) ) >. e. _V | 
						
							| 5 | 4 | rgen2w |  |-  A. g e. A A. f e. { h e. A | ( codA ` h ) = ( domA ` g ) } <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` C ) ( codA ` g ) ) ( 2nd ` f ) ) >. e. _V | 
						
							| 6 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 7 | 1 2 6 | coafval |  |-  .x. = ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` C ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) | 
						
							| 8 | 7 | fmpox |  |-  ( A. g e. A A. f e. { h e. A | ( codA ` h ) = ( domA ` g ) } <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` C ) ( codA ` g ) ) ( 2nd ` f ) ) >. e. _V <-> .x. : U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) --> _V ) | 
						
							| 9 | 5 8 | mpbi |  |-  .x. : U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) --> _V | 
						
							| 10 | 9 | fdmi |  |-  dom .x. = U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) | 
						
							| 11 | 10 | eleq2i |  |-  ( <. G , F >. e. dom .x. <-> <. G , F >. e. U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) ) | 
						
							| 12 |  | fveq2 |  |-  ( g = G -> ( domA ` g ) = ( domA ` G ) ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( g = G -> ( ( codA ` h ) = ( domA ` g ) <-> ( codA ` h ) = ( domA ` G ) ) ) | 
						
							| 14 | 13 | rabbidv |  |-  ( g = G -> { h e. A | ( codA ` h ) = ( domA ` g ) } = { h e. A | ( codA ` h ) = ( domA ` G ) } ) | 
						
							| 15 | 14 | opeliunxp2 |  |-  ( <. G , F >. e. U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) <-> ( G e. A /\ F e. { h e. A | ( codA ` h ) = ( domA ` G ) } ) ) | 
						
							| 16 |  | fveqeq2 |  |-  ( h = F -> ( ( codA ` h ) = ( domA ` G ) <-> ( codA ` F ) = ( domA ` G ) ) ) | 
						
							| 17 | 16 | elrab |  |-  ( F e. { h e. A | ( codA ` h ) = ( domA ` G ) } <-> ( F e. A /\ ( codA ` F ) = ( domA ` G ) ) ) | 
						
							| 18 | 17 | anbi2i |  |-  ( ( G e. A /\ F e. { h e. A | ( codA ` h ) = ( domA ` G ) } ) <-> ( G e. A /\ ( F e. A /\ ( codA ` F ) = ( domA ` G ) ) ) ) | 
						
							| 19 |  | an12 |  |-  ( ( G e. A /\ ( F e. A /\ ( codA ` F ) = ( domA ` G ) ) ) <-> ( F e. A /\ ( G e. A /\ ( codA ` F ) = ( domA ` G ) ) ) ) | 
						
							| 20 |  | 3anass |  |-  ( ( F e. A /\ G e. A /\ ( codA ` F ) = ( domA ` G ) ) <-> ( F e. A /\ ( G e. A /\ ( codA ` F ) = ( domA ` G ) ) ) ) | 
						
							| 21 | 19 20 | bitr4i |  |-  ( ( G e. A /\ ( F e. A /\ ( codA ` F ) = ( domA ` G ) ) ) <-> ( F e. A /\ G e. A /\ ( codA ` F ) = ( domA ` G ) ) ) | 
						
							| 22 | 15 18 21 | 3bitri |  |-  ( <. G , F >. e. U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) <-> ( F e. A /\ G e. A /\ ( codA ` F ) = ( domA ` G ) ) ) | 
						
							| 23 | 3 11 22 | 3bitri |  |-  ( G dom .x. F <-> ( F e. A /\ G e. A /\ ( codA ` F ) = ( domA ` G ) ) ) |