| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coafval.o | ⊢  ·   =  ( compa ‘ 𝐶 ) | 
						
							| 2 |  | coafval.a | ⊢ 𝐴  =  ( Arrow ‘ 𝐶 ) | 
						
							| 3 |  | df-br | ⊢ ( 𝐺 dom   ·  𝐹  ↔  〈 𝐺 ,  𝐹 〉  ∈  dom   ·  ) | 
						
							| 4 |  | otex | ⊢ 〈 ( doma ‘ 𝑓 ) ,  ( coda ‘ 𝑔 ) ,  ( ( 2nd  ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) ,  ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝐶 ) ( coda ‘ 𝑔 ) ) ( 2nd  ‘ 𝑓 ) ) 〉  ∈  V | 
						
							| 5 | 4 | rgen2w | ⊢ ∀ 𝑔  ∈  𝐴 ∀ 𝑓  ∈  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) } 〈 ( doma ‘ 𝑓 ) ,  ( coda ‘ 𝑔 ) ,  ( ( 2nd  ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) ,  ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝐶 ) ( coda ‘ 𝑔 ) ) ( 2nd  ‘ 𝑓 ) ) 〉  ∈  V | 
						
							| 6 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 7 | 1 2 6 | coafval | ⊢  ·   =  ( 𝑔  ∈  𝐴 ,  𝑓  ∈  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) }  ↦  〈 ( doma ‘ 𝑓 ) ,  ( coda ‘ 𝑔 ) ,  ( ( 2nd  ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) ,  ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝐶 ) ( coda ‘ 𝑔 ) ) ( 2nd  ‘ 𝑓 ) ) 〉 ) | 
						
							| 8 | 7 | fmpox | ⊢ ( ∀ 𝑔  ∈  𝐴 ∀ 𝑓  ∈  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) } 〈 ( doma ‘ 𝑓 ) ,  ( coda ‘ 𝑔 ) ,  ( ( 2nd  ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) ,  ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝐶 ) ( coda ‘ 𝑔 ) ) ( 2nd  ‘ 𝑓 ) ) 〉  ∈  V  ↔   ·  : ∪  𝑔  ∈  𝐴 ( { 𝑔 }  ×  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) } ) ⟶ V ) | 
						
							| 9 | 5 8 | mpbi | ⊢  ·  : ∪  𝑔  ∈  𝐴 ( { 𝑔 }  ×  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) } ) ⟶ V | 
						
							| 10 | 9 | fdmi | ⊢ dom   ·   =  ∪  𝑔  ∈  𝐴 ( { 𝑔 }  ×  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) } ) | 
						
							| 11 | 10 | eleq2i | ⊢ ( 〈 𝐺 ,  𝐹 〉  ∈  dom   ·   ↔  〈 𝐺 ,  𝐹 〉  ∈  ∪  𝑔  ∈  𝐴 ( { 𝑔 }  ×  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) } ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( doma ‘ 𝑔 )  =  ( doma ‘ 𝐺 ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑔  =  𝐺  →  ( ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 )  ↔  ( coda ‘ ℎ )  =  ( doma ‘ 𝐺 ) ) ) | 
						
							| 14 | 13 | rabbidv | ⊢ ( 𝑔  =  𝐺  →  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) }  =  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝐺 ) } ) | 
						
							| 15 | 14 | opeliunxp2 | ⊢ ( 〈 𝐺 ,  𝐹 〉  ∈  ∪  𝑔  ∈  𝐴 ( { 𝑔 }  ×  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) } )  ↔  ( 𝐺  ∈  𝐴  ∧  𝐹  ∈  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝐺 ) } ) ) | 
						
							| 16 |  | fveqeq2 | ⊢ ( ℎ  =  𝐹  →  ( ( coda ‘ ℎ )  =  ( doma ‘ 𝐺 )  ↔  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) ) | 
						
							| 17 | 16 | elrab | ⊢ ( 𝐹  ∈  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝐺 ) }  ↔  ( 𝐹  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) ) | 
						
							| 18 | 17 | anbi2i | ⊢ ( ( 𝐺  ∈  𝐴  ∧  𝐹  ∈  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝐺 ) } )  ↔  ( 𝐺  ∈  𝐴  ∧  ( 𝐹  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) ) ) | 
						
							| 19 |  | an12 | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ( 𝐹  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) )  ↔  ( 𝐹  ∈  𝐴  ∧  ( 𝐺  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) ) ) | 
						
							| 20 |  | 3anass | ⊢ ( ( 𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) )  ↔  ( 𝐹  ∈  𝐴  ∧  ( 𝐺  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) ) ) | 
						
							| 21 | 19 20 | bitr4i | ⊢ ( ( 𝐺  ∈  𝐴  ∧  ( 𝐹  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) )  ↔  ( 𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) ) | 
						
							| 22 | 15 18 21 | 3bitri | ⊢ ( 〈 𝐺 ,  𝐹 〉  ∈  ∪  𝑔  ∈  𝐴 ( { 𝑔 }  ×  { ℎ  ∈  𝐴  ∣  ( coda ‘ ℎ )  =  ( doma ‘ 𝑔 ) } )  ↔  ( 𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) ) | 
						
							| 23 | 3 11 22 | 3bitri | ⊢ ( 𝐺 dom   ·  𝐹  ↔  ( 𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴  ∧  ( coda ‘ 𝐹 )  =  ( doma ‘ 𝐺 ) ) ) |