Step |
Hyp |
Ref |
Expression |
1 |
|
coafval.o |
⊢ · = ( compa ‘ 𝐶 ) |
2 |
|
coafval.a |
⊢ 𝐴 = ( Arrow ‘ 𝐶 ) |
3 |
|
df-br |
⊢ ( 𝐺 dom · 𝐹 ↔ 〈 𝐺 , 𝐹 〉 ∈ dom · ) |
4 |
|
otex |
⊢ 〈 ( doma ‘ 𝑓 ) , ( coda ‘ 𝑔 ) , ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝐶 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) 〉 ∈ V |
5 |
4
|
rgen2w |
⊢ ∀ 𝑔 ∈ 𝐴 ∀ 𝑓 ∈ { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } 〈 ( doma ‘ 𝑓 ) , ( coda ‘ 𝑔 ) , ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝐶 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) 〉 ∈ V |
6 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
7 |
1 2 6
|
coafval |
⊢ · = ( 𝑔 ∈ 𝐴 , 𝑓 ∈ { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ↦ 〈 ( doma ‘ 𝑓 ) , ( coda ‘ 𝑔 ) , ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝐶 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) 〉 ) |
8 |
7
|
fmpox |
⊢ ( ∀ 𝑔 ∈ 𝐴 ∀ 𝑓 ∈ { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } 〈 ( doma ‘ 𝑓 ) , ( coda ‘ 𝑔 ) , ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝐶 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) 〉 ∈ V ↔ · : ∪ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ⟶ V ) |
9 |
5 8
|
mpbi |
⊢ · : ∪ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ⟶ V |
10 |
9
|
fdmi |
⊢ dom · = ∪ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) |
11 |
10
|
eleq2i |
⊢ ( 〈 𝐺 , 𝐹 〉 ∈ dom · ↔ 〈 𝐺 , 𝐹 〉 ∈ ∪ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ) |
12 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( doma ‘ 𝑔 ) = ( doma ‘ 𝐺 ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) ↔ ( coda ‘ ℎ ) = ( doma ‘ 𝐺 ) ) ) |
14 |
13
|
rabbidv |
⊢ ( 𝑔 = 𝐺 → { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } = { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝐺 ) } ) |
15 |
14
|
opeliunxp2 |
⊢ ( 〈 𝐺 , 𝐹 〉 ∈ ∪ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ↔ ( 𝐺 ∈ 𝐴 ∧ 𝐹 ∈ { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝐺 ) } ) ) |
16 |
|
fveqeq2 |
⊢ ( ℎ = 𝐹 → ( ( coda ‘ ℎ ) = ( doma ‘ 𝐺 ) ↔ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) |
17 |
16
|
elrab |
⊢ ( 𝐹 ∈ { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝐺 ) } ↔ ( 𝐹 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) |
18 |
17
|
anbi2i |
⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝐹 ∈ { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝐺 ) } ) ↔ ( 𝐺 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) ) |
19 |
|
an12 |
⊢ ( ( 𝐺 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) ↔ ( 𝐹 ∈ 𝐴 ∧ ( 𝐺 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) ) |
20 |
|
3anass |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ↔ ( 𝐹 ∈ 𝐴 ∧ ( 𝐺 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) ) |
21 |
19 20
|
bitr4i |
⊢ ( ( 𝐺 ∈ 𝐴 ∧ ( 𝐹 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) ↔ ( 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) |
22 |
15 18 21
|
3bitri |
⊢ ( 〈 𝐺 , 𝐹 〉 ∈ ∪ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ↔ ( 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) |
23 |
3 11 22
|
3bitri |
⊢ ( 𝐺 dom · 𝐹 ↔ ( 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) |