Metamath Proof Explorer


Theorem dmcoass

Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses coafval.o · = ( compa𝐶 )
coafval.a 𝐴 = ( Arrow ‘ 𝐶 )
Assertion dmcoass dom · ⊆ ( 𝐴 × 𝐴 )

Proof

Step Hyp Ref Expression
1 coafval.o · = ( compa𝐶 )
2 coafval.a 𝐴 = ( Arrow ‘ 𝐶 )
3 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
4 1 2 3 coafval · = ( 𝑔𝐴 , 𝑓 ∈ { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } ↦ ⟨ ( doma𝑓 ) , ( coda𝑔 ) , ( ( 2nd𝑔 ) ( ⟨ ( doma𝑓 ) , ( doma𝑔 ) ⟩ ( comp ‘ 𝐶 ) ( coda𝑔 ) ) ( 2nd𝑓 ) ) ⟩ )
5 4 dmmpossx dom · 𝑔𝐴 ( { 𝑔 } × { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } )
6 iunss ( 𝑔𝐴 ( { 𝑔 } × { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 ) ↔ ∀ 𝑔𝐴 ( { 𝑔 } × { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 ) )
7 snssi ( 𝑔𝐴 → { 𝑔 } ⊆ 𝐴 )
8 ssrab2 { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } ⊆ 𝐴
9 xpss12 ( ( { 𝑔 } ⊆ 𝐴 ∧ { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } ⊆ 𝐴 ) → ( { 𝑔 } × { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 ) )
10 7 8 9 sylancl ( 𝑔𝐴 → ( { 𝑔 } × { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 ) )
11 6 10 mprgbir 𝑔𝐴 ( { 𝑔 } × { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 )
12 5 11 sstri dom · ⊆ ( 𝐴 × 𝐴 )