Step |
Hyp |
Ref |
Expression |
1 |
|
coafval.o |
⊢ · = ( compa ‘ 𝐶 ) |
2 |
|
coafval.a |
⊢ 𝐴 = ( Arrow ‘ 𝐶 ) |
3 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
4 |
1 2 3
|
coafval |
⊢ · = ( 𝑔 ∈ 𝐴 , 𝑓 ∈ { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ↦ 〈 ( doma ‘ 𝑓 ) , ( coda ‘ 𝑔 ) , ( ( 2nd ‘ 𝑔 ) ( 〈 ( doma ‘ 𝑓 ) , ( doma ‘ 𝑔 ) 〉 ( comp ‘ 𝐶 ) ( coda ‘ 𝑔 ) ) ( 2nd ‘ 𝑓 ) ) 〉 ) |
5 |
4
|
dmmpossx |
⊢ dom · ⊆ ∪ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) |
6 |
|
iunss |
⊢ ( ∪ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 ) ↔ ∀ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 ) ) |
7 |
|
snssi |
⊢ ( 𝑔 ∈ 𝐴 → { 𝑔 } ⊆ 𝐴 ) |
8 |
|
ssrab2 |
⊢ { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ⊆ 𝐴 |
9 |
|
xpss12 |
⊢ ( ( { 𝑔 } ⊆ 𝐴 ∧ { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ⊆ 𝐴 ) → ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 ) ) |
10 |
7 8 9
|
sylancl |
⊢ ( 𝑔 ∈ 𝐴 → ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 ) ) |
11 |
6 10
|
mprgbir |
⊢ ∪ 𝑔 ∈ 𝐴 ( { 𝑔 } × { ℎ ∈ 𝐴 ∣ ( coda ‘ ℎ ) = ( doma ‘ 𝑔 ) } ) ⊆ ( 𝐴 × 𝐴 ) |
12 |
5 11
|
sstri |
⊢ dom · ⊆ ( 𝐴 × 𝐴 ) |