| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coafval.o |
|- .x. = ( compA ` C ) |
| 2 |
|
coafval.a |
|- A = ( Arrow ` C ) |
| 3 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 4 |
1 2 3
|
coafval |
|- .x. = ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` C ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) |
| 5 |
4
|
dmmpossx |
|- dom .x. C_ U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) |
| 6 |
|
iunss |
|- ( U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) <-> A. g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) ) |
| 7 |
|
snssi |
|- ( g e. A -> { g } C_ A ) |
| 8 |
|
ssrab2 |
|- { h e. A | ( codA ` h ) = ( domA ` g ) } C_ A |
| 9 |
|
xpss12 |
|- ( ( { g } C_ A /\ { h e. A | ( codA ` h ) = ( domA ` g ) } C_ A ) -> ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) ) |
| 10 |
7 8 9
|
sylancl |
|- ( g e. A -> ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) ) |
| 11 |
6 10
|
mprgbir |
|- U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) |
| 12 |
5 11
|
sstri |
|- dom .x. C_ ( A X. A ) |