Step |
Hyp |
Ref |
Expression |
1 |
|
coafval.o |
|- .x. = ( compA ` C ) |
2 |
|
coafval.a |
|- A = ( Arrow ` C ) |
3 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
4 |
1 2 3
|
coafval |
|- .x. = ( g e. A , f e. { h e. A | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. ( comp ` C ) ( codA ` g ) ) ( 2nd ` f ) ) >. ) |
5 |
4
|
dmmpossx |
|- dom .x. C_ U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) |
6 |
|
iunss |
|- ( U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) <-> A. g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) ) |
7 |
|
snssi |
|- ( g e. A -> { g } C_ A ) |
8 |
|
ssrab2 |
|- { h e. A | ( codA ` h ) = ( domA ` g ) } C_ A |
9 |
|
xpss12 |
|- ( ( { g } C_ A /\ { h e. A | ( codA ` h ) = ( domA ` g ) } C_ A ) -> ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) ) |
10 |
7 8 9
|
sylancl |
|- ( g e. A -> ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) ) |
11 |
6 10
|
mprgbir |
|- U_ g e. A ( { g } X. { h e. A | ( codA ` h ) = ( domA ` g ) } ) C_ ( A X. A ) |
12 |
5 11
|
sstri |
|- dom .x. C_ ( A X. A ) |