Step |
Hyp |
Ref |
Expression |
1 |
|
homdmcoa.o |
|- .x. = ( compA ` C ) |
2 |
|
homdmcoa.h |
|- H = ( HomA ` C ) |
3 |
|
homdmcoa.f |
|- ( ph -> F e. ( X H Y ) ) |
4 |
|
homdmcoa.g |
|- ( ph -> G e. ( Y H Z ) ) |
5 |
|
eqid |
|- ( Arrow ` C ) = ( Arrow ` C ) |
6 |
5 2
|
homarw |
|- ( X H Y ) C_ ( Arrow ` C ) |
7 |
6 3
|
sselid |
|- ( ph -> F e. ( Arrow ` C ) ) |
8 |
5 2
|
homarw |
|- ( Y H Z ) C_ ( Arrow ` C ) |
9 |
8 4
|
sselid |
|- ( ph -> G e. ( Arrow ` C ) ) |
10 |
2
|
homacd |
|- ( F e. ( X H Y ) -> ( codA ` F ) = Y ) |
11 |
3 10
|
syl |
|- ( ph -> ( codA ` F ) = Y ) |
12 |
2
|
homadm |
|- ( G e. ( Y H Z ) -> ( domA ` G ) = Y ) |
13 |
4 12
|
syl |
|- ( ph -> ( domA ` G ) = Y ) |
14 |
11 13
|
eqtr4d |
|- ( ph -> ( codA ` F ) = ( domA ` G ) ) |
15 |
1 5
|
eldmcoa |
|- ( G dom .x. F <-> ( F e. ( Arrow ` C ) /\ G e. ( Arrow ` C ) /\ ( codA ` F ) = ( domA ` G ) ) ) |
16 |
7 9 14 15
|
syl3anbrc |
|- ( ph -> G dom .x. F ) |