Metamath Proof Explorer


Theorem homdmcoa

Description: If F : X --> Y and G : Y --> Z , then G and F are composable. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homdmcoa.o
|- .x. = ( compA ` C )
homdmcoa.h
|- H = ( HomA ` C )
homdmcoa.f
|- ( ph -> F e. ( X H Y ) )
homdmcoa.g
|- ( ph -> G e. ( Y H Z ) )
Assertion homdmcoa
|- ( ph -> G dom .x. F )

Proof

Step Hyp Ref Expression
1 homdmcoa.o
 |-  .x. = ( compA ` C )
2 homdmcoa.h
 |-  H = ( HomA ` C )
3 homdmcoa.f
 |-  ( ph -> F e. ( X H Y ) )
4 homdmcoa.g
 |-  ( ph -> G e. ( Y H Z ) )
5 eqid
 |-  ( Arrow ` C ) = ( Arrow ` C )
6 5 2 homarw
 |-  ( X H Y ) C_ ( Arrow ` C )
7 6 3 sselid
 |-  ( ph -> F e. ( Arrow ` C ) )
8 5 2 homarw
 |-  ( Y H Z ) C_ ( Arrow ` C )
9 8 4 sselid
 |-  ( ph -> G e. ( Arrow ` C ) )
10 2 homacd
 |-  ( F e. ( X H Y ) -> ( codA ` F ) = Y )
11 3 10 syl
 |-  ( ph -> ( codA ` F ) = Y )
12 2 homadm
 |-  ( G e. ( Y H Z ) -> ( domA ` G ) = Y )
13 4 12 syl
 |-  ( ph -> ( domA ` G ) = Y )
14 11 13 eqtr4d
 |-  ( ph -> ( codA ` F ) = ( domA ` G ) )
15 1 5 eldmcoa
 |-  ( G dom .x. F <-> ( F e. ( Arrow ` C ) /\ G e. ( Arrow ` C ) /\ ( codA ` F ) = ( domA ` G ) ) )
16 7 9 14 15 syl3anbrc
 |-  ( ph -> G dom .x. F )