| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homdmcoa.o |
|- .x. = ( compA ` C ) |
| 2 |
|
homdmcoa.h |
|- H = ( HomA ` C ) |
| 3 |
|
homdmcoa.f |
|- ( ph -> F e. ( X H Y ) ) |
| 4 |
|
homdmcoa.g |
|- ( ph -> G e. ( Y H Z ) ) |
| 5 |
|
eqid |
|- ( Arrow ` C ) = ( Arrow ` C ) |
| 6 |
5 2
|
homarw |
|- ( X H Y ) C_ ( Arrow ` C ) |
| 7 |
6 3
|
sselid |
|- ( ph -> F e. ( Arrow ` C ) ) |
| 8 |
5 2
|
homarw |
|- ( Y H Z ) C_ ( Arrow ` C ) |
| 9 |
8 4
|
sselid |
|- ( ph -> G e. ( Arrow ` C ) ) |
| 10 |
2
|
homacd |
|- ( F e. ( X H Y ) -> ( codA ` F ) = Y ) |
| 11 |
3 10
|
syl |
|- ( ph -> ( codA ` F ) = Y ) |
| 12 |
2
|
homadm |
|- ( G e. ( Y H Z ) -> ( domA ` G ) = Y ) |
| 13 |
4 12
|
syl |
|- ( ph -> ( domA ` G ) = Y ) |
| 14 |
11 13
|
eqtr4d |
|- ( ph -> ( codA ` F ) = ( domA ` G ) ) |
| 15 |
1 5
|
eldmcoa |
|- ( G dom .x. F <-> ( F e. ( Arrow ` C ) /\ G e. ( Arrow ` C ) /\ ( codA ` F ) = ( domA ` G ) ) ) |
| 16 |
7 9 14 15
|
syl3anbrc |
|- ( ph -> G dom .x. F ) |