Metamath Proof Explorer


Theorem homdmcoa

Description: If F : X --> Y and G : Y --> Z , then G and F are composable. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homdmcoa.o ·˙=compaC
homdmcoa.h H=HomaC
homdmcoa.f φFXHY
homdmcoa.g φGYHZ
Assertion homdmcoa φGdom·˙F

Proof

Step Hyp Ref Expression
1 homdmcoa.o ·˙=compaC
2 homdmcoa.h H=HomaC
3 homdmcoa.f φFXHY
4 homdmcoa.g φGYHZ
5 eqid ArrowC=ArrowC
6 5 2 homarw XHYArrowC
7 6 3 sselid φFArrowC
8 5 2 homarw YHZArrowC
9 8 4 sselid φGArrowC
10 2 homacd FXHYcodaF=Y
11 3 10 syl φcodaF=Y
12 2 homadm GYHZdomaG=Y
13 4 12 syl φdomaG=Y
14 11 13 eqtr4d φcodaF=domaG
15 1 5 eldmcoa Gdom·˙FFArrowCGArrowCcodaF=domaG
16 7 9 14 15 syl3anbrc φGdom·˙F