Metamath Proof Explorer


Definition df-coa

Description: Definition of the composition of arrows. Since arrows are tagged with domain and codomain, this does not need to be a quinary operation like the regular composition in a category comp . Instead, it is a partial binary operation on arrows, which is defined when the domain of the first arrow matches the codomain of the second. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-coa compa=cCatgArrowc,fhArrowc|codah=domagdomafcodag2ndgdomafdomagcompccodag2ndf

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccoa classcompa
1 vc setvarc
2 ccat classCat
3 vg setvarg
4 carw classArrow
5 1 cv setvarc
6 5 4 cfv classArrowc
7 vf setvarf
8 vh setvarh
9 ccoda classcoda
10 8 cv setvarh
11 10 9 cfv classcodah
12 cdoma classdoma
13 3 cv setvarg
14 13 12 cfv classdomag
15 11 14 wceq wffcodah=domag
16 15 8 6 crab classhArrowc|codah=domag
17 7 cv setvarf
18 17 12 cfv classdomaf
19 13 9 cfv classcodag
20 c2nd class2nd
21 13 20 cfv class2ndg
22 18 14 cop classdomafdomag
23 cco classcomp
24 5 23 cfv classcompc
25 22 19 24 co classdomafdomagcompccodag
26 17 20 cfv class2ndf
27 21 26 25 co class2ndgdomafdomagcompccodag2ndf
28 18 19 27 cotp classdomafcodag2ndgdomafdomagcompccodag2ndf
29 3 7 6 16 28 cmpo classgArrowc,fhArrowc|codah=domagdomafcodag2ndgdomafdomagcompccodag2ndf
30 1 2 29 cmpt classcCatgArrowc,fhArrowc|codah=domagdomafcodag2ndgdomafdomagcompccodag2ndf
31 0 30 wceq wffcompa=cCatgArrowc,fhArrowc|codah=domagdomafcodag2ndgdomafdomagcompccodag2ndf