Metamath Proof Explorer


Theorem coaval

Description: Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homdmcoa.o · ˙ = comp a C
homdmcoa.h H = Hom a C
homdmcoa.f φ F X H Y
homdmcoa.g φ G Y H Z
coaval.x ˙ = comp C
Assertion coaval φ G · ˙ F = X Z 2 nd G X Y ˙ Z 2 nd F

Proof

Step Hyp Ref Expression
1 homdmcoa.o · ˙ = comp a C
2 homdmcoa.h H = Hom a C
3 homdmcoa.f φ F X H Y
4 homdmcoa.g φ G Y H Z
5 coaval.x ˙ = comp C
6 eqid Arrow C = Arrow C
7 1 6 5 coafval · ˙ = g Arrow C , f h Arrow C | cod a h = dom a g dom a f cod a g 2 nd g dom a f dom a g ˙ cod a g 2 nd f
8 6 2 homarw Y H Z Arrow C
9 8 4 sselid φ G Arrow C
10 fveqeq2 h = F cod a h = dom a g cod a F = dom a g
11 6 2 homarw X H Y Arrow C
12 3 adantr φ g = G F X H Y
13 11 12 sselid φ g = G F Arrow C
14 2 homacd F X H Y cod a F = Y
15 12 14 syl φ g = G cod a F = Y
16 simpr φ g = G g = G
17 16 fveq2d φ g = G dom a g = dom a G
18 4 adantr φ g = G G Y H Z
19 2 homadm G Y H Z dom a G = Y
20 18 19 syl φ g = G dom a G = Y
21 17 20 eqtrd φ g = G dom a g = Y
22 15 21 eqtr4d φ g = G cod a F = dom a g
23 10 13 22 elrabd φ g = G F h Arrow C | cod a h = dom a g
24 otex dom a f cod a g 2 nd g dom a f dom a g ˙ cod a g 2 nd f V
25 24 a1i φ g = G f = F dom a f cod a g 2 nd g dom a f dom a g ˙ cod a g 2 nd f V
26 simprr φ g = G f = F f = F
27 26 fveq2d φ g = G f = F dom a f = dom a F
28 2 homadm F X H Y dom a F = X
29 12 28 syl φ g = G dom a F = X
30 29 adantrr φ g = G f = F dom a F = X
31 27 30 eqtrd φ g = G f = F dom a f = X
32 16 fveq2d φ g = G cod a g = cod a G
33 2 homacd G Y H Z cod a G = Z
34 18 33 syl φ g = G cod a G = Z
35 32 34 eqtrd φ g = G cod a g = Z
36 35 adantrr φ g = G f = F cod a g = Z
37 21 adantrr φ g = G f = F dom a g = Y
38 31 37 opeq12d φ g = G f = F dom a f dom a g = X Y
39 38 36 oveq12d φ g = G f = F dom a f dom a g ˙ cod a g = X Y ˙ Z
40 simprl φ g = G f = F g = G
41 40 fveq2d φ g = G f = F 2 nd g = 2 nd G
42 26 fveq2d φ g = G f = F 2 nd f = 2 nd F
43 39 41 42 oveq123d φ g = G f = F 2 nd g dom a f dom a g ˙ cod a g 2 nd f = 2 nd G X Y ˙ Z 2 nd F
44 31 36 43 oteq123d φ g = G f = F dom a f cod a g 2 nd g dom a f dom a g ˙ cod a g 2 nd f = X Z 2 nd G X Y ˙ Z 2 nd F
45 9 23 25 44 ovmpodv2 φ · ˙ = g Arrow C , f h Arrow C | cod a h = dom a g dom a f cod a g 2 nd g dom a f dom a g ˙ cod a g 2 nd f G · ˙ F = X Z 2 nd G X Y ˙ Z 2 nd F
46 7 45 mpi φ G · ˙ F = X Z 2 nd G X Y ˙ Z 2 nd F