Step |
Hyp |
Ref |
Expression |
1 |
|
homdmcoa.o |
|- .x. = ( compA ` C ) |
2 |
|
homdmcoa.h |
|- H = ( HomA ` C ) |
3 |
|
homdmcoa.f |
|- ( ph -> F e. ( X H Y ) ) |
4 |
|
homdmcoa.g |
|- ( ph -> G e. ( Y H Z ) ) |
5 |
|
coaval.x |
|- .xb = ( comp ` C ) |
6 |
|
eqid |
|- ( Arrow ` C ) = ( Arrow ` C ) |
7 |
1 6 5
|
coafval |
|- .x. = ( g e. ( Arrow ` C ) , f e. { h e. ( Arrow ` C ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) |
8 |
6 2
|
homarw |
|- ( Y H Z ) C_ ( Arrow ` C ) |
9 |
8 4
|
sselid |
|- ( ph -> G e. ( Arrow ` C ) ) |
10 |
|
fveqeq2 |
|- ( h = F -> ( ( codA ` h ) = ( domA ` g ) <-> ( codA ` F ) = ( domA ` g ) ) ) |
11 |
6 2
|
homarw |
|- ( X H Y ) C_ ( Arrow ` C ) |
12 |
3
|
adantr |
|- ( ( ph /\ g = G ) -> F e. ( X H Y ) ) |
13 |
11 12
|
sselid |
|- ( ( ph /\ g = G ) -> F e. ( Arrow ` C ) ) |
14 |
2
|
homacd |
|- ( F e. ( X H Y ) -> ( codA ` F ) = Y ) |
15 |
12 14
|
syl |
|- ( ( ph /\ g = G ) -> ( codA ` F ) = Y ) |
16 |
|
simpr |
|- ( ( ph /\ g = G ) -> g = G ) |
17 |
16
|
fveq2d |
|- ( ( ph /\ g = G ) -> ( domA ` g ) = ( domA ` G ) ) |
18 |
4
|
adantr |
|- ( ( ph /\ g = G ) -> G e. ( Y H Z ) ) |
19 |
2
|
homadm |
|- ( G e. ( Y H Z ) -> ( domA ` G ) = Y ) |
20 |
18 19
|
syl |
|- ( ( ph /\ g = G ) -> ( domA ` G ) = Y ) |
21 |
17 20
|
eqtrd |
|- ( ( ph /\ g = G ) -> ( domA ` g ) = Y ) |
22 |
15 21
|
eqtr4d |
|- ( ( ph /\ g = G ) -> ( codA ` F ) = ( domA ` g ) ) |
23 |
10 13 22
|
elrabd |
|- ( ( ph /\ g = G ) -> F e. { h e. ( Arrow ` C ) | ( codA ` h ) = ( domA ` g ) } ) |
24 |
|
otex |
|- <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. e. _V |
25 |
24
|
a1i |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. e. _V ) |
26 |
|
simprr |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> f = F ) |
27 |
26
|
fveq2d |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( domA ` f ) = ( domA ` F ) ) |
28 |
2
|
homadm |
|- ( F e. ( X H Y ) -> ( domA ` F ) = X ) |
29 |
12 28
|
syl |
|- ( ( ph /\ g = G ) -> ( domA ` F ) = X ) |
30 |
29
|
adantrr |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( domA ` F ) = X ) |
31 |
27 30
|
eqtrd |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( domA ` f ) = X ) |
32 |
16
|
fveq2d |
|- ( ( ph /\ g = G ) -> ( codA ` g ) = ( codA ` G ) ) |
33 |
2
|
homacd |
|- ( G e. ( Y H Z ) -> ( codA ` G ) = Z ) |
34 |
18 33
|
syl |
|- ( ( ph /\ g = G ) -> ( codA ` G ) = Z ) |
35 |
32 34
|
eqtrd |
|- ( ( ph /\ g = G ) -> ( codA ` g ) = Z ) |
36 |
35
|
adantrr |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( codA ` g ) = Z ) |
37 |
21
|
adantrr |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( domA ` g ) = Y ) |
38 |
31 37
|
opeq12d |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> <. ( domA ` f ) , ( domA ` g ) >. = <. X , Y >. ) |
39 |
38 36
|
oveq12d |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) = ( <. X , Y >. .xb Z ) ) |
40 |
|
simprl |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> g = G ) |
41 |
40
|
fveq2d |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( 2nd ` g ) = ( 2nd ` G ) ) |
42 |
26
|
fveq2d |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( 2nd ` f ) = ( 2nd ` F ) ) |
43 |
39 41 42
|
oveq123d |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) ) |
44 |
31 36 43
|
oteq123d |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. = <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) |
45 |
9 23 25 44
|
ovmpodv2 |
|- ( ph -> ( .x. = ( g e. ( Arrow ` C ) , f e. { h e. ( Arrow ` C ) | ( codA ` h ) = ( domA ` g ) } |-> <. ( domA ` f ) , ( codA ` g ) , ( ( 2nd ` g ) ( <. ( domA ` f ) , ( domA ` g ) >. .xb ( codA ` g ) ) ( 2nd ` f ) ) >. ) -> ( G .x. F ) = <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) ) |
46 |
7 45
|
mpi |
|- ( ph -> ( G .x. F ) = <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) |