Metamath Proof Explorer


Theorem coa2

Description: The morphism part of arrow composition. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homdmcoa.o
|- .x. = ( compA ` C )
homdmcoa.h
|- H = ( HomA ` C )
homdmcoa.f
|- ( ph -> F e. ( X H Y ) )
homdmcoa.g
|- ( ph -> G e. ( Y H Z ) )
coaval.x
|- .xb = ( comp ` C )
Assertion coa2
|- ( ph -> ( 2nd ` ( G .x. F ) ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) )

Proof

Step Hyp Ref Expression
1 homdmcoa.o
 |-  .x. = ( compA ` C )
2 homdmcoa.h
 |-  H = ( HomA ` C )
3 homdmcoa.f
 |-  ( ph -> F e. ( X H Y ) )
4 homdmcoa.g
 |-  ( ph -> G e. ( Y H Z ) )
5 coaval.x
 |-  .xb = ( comp ` C )
6 1 2 3 4 5 coaval
 |-  ( ph -> ( G .x. F ) = <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. )
7 6 fveq2d
 |-  ( ph -> ( 2nd ` ( G .x. F ) ) = ( 2nd ` <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) )
8 ovex
 |-  ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) e. _V
9 ot3rdg
 |-  ( ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) e. _V -> ( 2nd ` <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) )
10 8 9 ax-mp
 |-  ( 2nd ` <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) )
11 7 10 eqtrdi
 |-  ( ph -> ( 2nd ` ( G .x. F ) ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) )