| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homdmcoa.o |  |-  .x. = ( compA ` C ) | 
						
							| 2 |  | homdmcoa.h |  |-  H = ( HomA ` C ) | 
						
							| 3 |  | homdmcoa.f |  |-  ( ph -> F e. ( X H Y ) ) | 
						
							| 4 |  | homdmcoa.g |  |-  ( ph -> G e. ( Y H Z ) ) | 
						
							| 5 |  | coaval.x |  |-  .xb = ( comp ` C ) | 
						
							| 6 | 1 2 3 4 5 | coaval |  |-  ( ph -> ( G .x. F ) = <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ph -> ( 2nd ` ( G .x. F ) ) = ( 2nd ` <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) ) | 
						
							| 8 |  | ovex |  |-  ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) e. _V | 
						
							| 9 |  | ot3rdg |  |-  ( ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) e. _V -> ( 2nd ` <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( 2nd ` <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) | 
						
							| 11 | 7 10 | eqtrdi |  |-  ( ph -> ( 2nd ` ( G .x. F ) ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) ) |