Step |
Hyp |
Ref |
Expression |
1 |
|
homdmcoa.o |
|- .x. = ( compA ` C ) |
2 |
|
homdmcoa.h |
|- H = ( HomA ` C ) |
3 |
|
homdmcoa.f |
|- ( ph -> F e. ( X H Y ) ) |
4 |
|
homdmcoa.g |
|- ( ph -> G e. ( Y H Z ) ) |
5 |
|
coaval.x |
|- .xb = ( comp ` C ) |
6 |
1 2 3 4 5
|
coaval |
|- ( ph -> ( G .x. F ) = <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) |
7 |
6
|
fveq2d |
|- ( ph -> ( 2nd ` ( G .x. F ) ) = ( 2nd ` <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) ) |
8 |
|
ovex |
|- ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) e. _V |
9 |
|
ot3rdg |
|- ( ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) e. _V -> ( 2nd ` <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) ) |
10 |
8 9
|
ax-mp |
|- ( 2nd ` <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) >. ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) |
11 |
7 10
|
eqtrdi |
|- ( ph -> ( 2nd ` ( G .x. F ) ) = ( ( 2nd ` G ) ( <. X , Y >. .xb Z ) ( 2nd ` F ) ) ) |