| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homdmcoa.o |
⊢ · = ( compa ‘ 𝐶 ) |
| 2 |
|
homdmcoa.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
| 3 |
|
homdmcoa.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 4 |
|
homdmcoa.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
| 5 |
|
coaval.x |
⊢ ∙ = ( comp ‘ 𝐶 ) |
| 6 |
1 2 3 4 5
|
coaval |
⊢ ( 𝜑 → ( 𝐺 · 𝐹 ) = 〈 𝑋 , 𝑍 , ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ( 2nd ‘ 𝐹 ) ) 〉 ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 · 𝐹 ) ) = ( 2nd ‘ 〈 𝑋 , 𝑍 , ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ( 2nd ‘ 𝐹 ) ) 〉 ) ) |
| 8 |
|
ovex |
⊢ ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ( 2nd ‘ 𝐹 ) ) ∈ V |
| 9 |
|
ot3rdg |
⊢ ( ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ( 2nd ‘ 𝐹 ) ) ∈ V → ( 2nd ‘ 〈 𝑋 , 𝑍 , ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ( 2nd ‘ 𝐹 ) ) 〉 ) = ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ( 2nd ‘ 𝐹 ) ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( 2nd ‘ 〈 𝑋 , 𝑍 , ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ( 2nd ‘ 𝐹 ) ) 〉 ) = ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ( 2nd ‘ 𝐹 ) ) |
| 11 |
7 10
|
eqtrdi |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 · 𝐹 ) ) = ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ( 2nd ‘ 𝐹 ) ) ) |