| Step | Hyp | Ref | Expression | 
						
							| 1 |  | homdmcoa.o | ⊢  ·   =  ( compa ‘ 𝐶 ) | 
						
							| 2 |  | homdmcoa.h | ⊢ 𝐻  =  ( Homa ‘ 𝐶 ) | 
						
							| 3 |  | homdmcoa.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 4 |  | homdmcoa.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑌 𝐻 𝑍 ) ) | 
						
							| 5 |  | coaval.x | ⊢  ∙   =  ( comp ‘ 𝐶 ) | 
						
							| 6 | 1 2 3 4 5 | coaval | ⊢ ( 𝜑  →  ( 𝐺  ·  𝐹 )  =  〈 𝑋 ,  𝑍 ,  ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉  ∙  𝑍 ) ( 2nd  ‘ 𝐹 ) ) 〉 ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐺  ·  𝐹 ) )  =  ( 2nd  ‘ 〈 𝑋 ,  𝑍 ,  ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉  ∙  𝑍 ) ( 2nd  ‘ 𝐹 ) ) 〉 ) ) | 
						
							| 8 |  | ovex | ⊢ ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉  ∙  𝑍 ) ( 2nd  ‘ 𝐹 ) )  ∈  V | 
						
							| 9 |  | ot3rdg | ⊢ ( ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉  ∙  𝑍 ) ( 2nd  ‘ 𝐹 ) )  ∈  V  →  ( 2nd  ‘ 〈 𝑋 ,  𝑍 ,  ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉  ∙  𝑍 ) ( 2nd  ‘ 𝐹 ) ) 〉 )  =  ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉  ∙  𝑍 ) ( 2nd  ‘ 𝐹 ) ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( 2nd  ‘ 〈 𝑋 ,  𝑍 ,  ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉  ∙  𝑍 ) ( 2nd  ‘ 𝐹 ) ) 〉 )  =  ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉  ∙  𝑍 ) ( 2nd  ‘ 𝐹 ) ) | 
						
							| 11 | 7 10 | eqtrdi | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐺  ·  𝐹 ) )  =  ( ( 2nd  ‘ 𝐺 ) ( 〈 𝑋 ,  𝑌 〉  ∙  𝑍 ) ( 2nd  ‘ 𝐹 ) ) ) |