Metamath Proof Explorer


Theorem coa2

Description: The morphism part of arrow composition. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homdmcoa.o · ˙ = comp a C
homdmcoa.h H = Hom a C
homdmcoa.f φ F X H Y
homdmcoa.g φ G Y H Z
coaval.x ˙ = comp C
Assertion coa2 φ 2 nd G · ˙ F = 2 nd G X Y ˙ Z 2 nd F

Proof

Step Hyp Ref Expression
1 homdmcoa.o · ˙ = comp a C
2 homdmcoa.h H = Hom a C
3 homdmcoa.f φ F X H Y
4 homdmcoa.g φ G Y H Z
5 coaval.x ˙ = comp C
6 1 2 3 4 5 coaval φ G · ˙ F = X Z 2 nd G X Y ˙ Z 2 nd F
7 6 fveq2d φ 2 nd G · ˙ F = 2 nd X Z 2 nd G X Y ˙ Z 2 nd F
8 ovex 2 nd G X Y ˙ Z 2 nd F V
9 ot3rdg 2 nd G X Y ˙ Z 2 nd F V 2 nd X Z 2 nd G X Y ˙ Z 2 nd F = 2 nd G X Y ˙ Z 2 nd F
10 8 9 ax-mp 2 nd X Z 2 nd G X Y ˙ Z 2 nd F = 2 nd G X Y ˙ Z 2 nd F
11 7 10 eqtrdi φ 2 nd G · ˙ F = 2 nd G X Y ˙ Z 2 nd F