Metamath Proof Explorer


Theorem coa2

Description: The morphism part of arrow composition. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homdmcoa.o ·˙=compaC
homdmcoa.h H=HomaC
homdmcoa.f φFXHY
homdmcoa.g φGYHZ
coaval.x ˙=compC
Assertion coa2 φ2ndG·˙F=2ndGXY˙Z2ndF

Proof

Step Hyp Ref Expression
1 homdmcoa.o ·˙=compaC
2 homdmcoa.h H=HomaC
3 homdmcoa.f φFXHY
4 homdmcoa.g φGYHZ
5 coaval.x ˙=compC
6 1 2 3 4 5 coaval φG·˙F=XZ2ndGXY˙Z2ndF
7 6 fveq2d φ2ndG·˙F=2ndXZ2ndGXY˙Z2ndF
8 ovex 2ndGXY˙Z2ndFV
9 ot3rdg 2ndGXY˙Z2ndFV2ndXZ2ndGXY˙Z2ndF=2ndGXY˙Z2ndF
10 8 9 ax-mp 2ndXZ2ndGXY˙Z2ndF=2ndGXY˙Z2ndF
11 7 10 eqtrdi φ2ndG·˙F=2ndGXY˙Z2ndF