Database
BASIC CATEGORY THEORY
Arrows (disjointified hom-sets)
Identity and composition for arrows
coa2
Next ⟩
coahom
Metamath Proof Explorer
Ascii
Unicode
Theorem
coa2
Description:
The morphism part of arrow composition.
(Contributed by
Mario Carneiro
, 11-Jan-2017)
Ref
Expression
Hypotheses
homdmcoa.o
⊢
·
˙
=
comp
a
⁡
C
homdmcoa.h
⊢
H
=
Hom
a
⁡
C
homdmcoa.f
⊢
φ
→
F
∈
X
H
Y
homdmcoa.g
⊢
φ
→
G
∈
Y
H
Z
coaval.x
⊢
∙
˙
=
comp
⁡
C
Assertion
coa2
⊢
φ
→
2
nd
⁡
G
·
˙
F
=
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F
Proof
Step
Hyp
Ref
Expression
1
homdmcoa.o
⊢
·
˙
=
comp
a
⁡
C
2
homdmcoa.h
⊢
H
=
Hom
a
⁡
C
3
homdmcoa.f
⊢
φ
→
F
∈
X
H
Y
4
homdmcoa.g
⊢
φ
→
G
∈
Y
H
Z
5
coaval.x
⊢
∙
˙
=
comp
⁡
C
6
1
2
3
4
5
coaval
⊢
φ
→
G
·
˙
F
=
X
Z
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F
7
6
fveq2d
⊢
φ
→
2
nd
⁡
G
·
˙
F
=
2
nd
⁡
X
Z
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F
8
ovex
⊢
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F
∈
V
9
ot3rdg
⊢
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F
∈
V
→
2
nd
⁡
X
Z
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F
=
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F
10
8
9
ax-mp
⊢
2
nd
⁡
X
Z
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F
=
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F
11
7
10
eqtrdi
⊢
φ
→
2
nd
⁡
G
·
˙
F
=
2
nd
⁡
G
X
Y
∙
˙
Z
2
nd
⁡
F