Step |
Hyp |
Ref |
Expression |
1 |
|
homdmcoa.o |
⊢ · = ( compa ‘ 𝐶 ) |
2 |
|
homdmcoa.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
3 |
|
homdmcoa.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
4 |
|
homdmcoa.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
5 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
6 |
1 2 3 4 5
|
coaval |
⊢ ( 𝜑 → ( 𝐺 · 𝐹 ) = 〈 𝑋 , 𝑍 , ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 2nd ‘ 𝐹 ) ) 〉 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
8 |
2
|
homarcl |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
10 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
11 |
2 7
|
homarcl2 |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
13 |
12
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
14 |
2 7
|
homarcl2 |
⊢ ( 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) → ( 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) |
16 |
15
|
simprd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
17 |
12
|
simprd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
18 |
2 10
|
homahom |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 2nd ‘ 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
20 |
2 10
|
homahom |
⊢ ( 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) → ( 2nd ‘ 𝐺 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
21 |
4 20
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
22 |
7 10 5 9 13 17 16 19 21
|
catcocl |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 2nd ‘ 𝐹 ) ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
23 |
2 7 9 10 13 16 22
|
elhomai2 |
⊢ ( 𝜑 → 〈 𝑋 , 𝑍 , ( ( 2nd ‘ 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 2nd ‘ 𝐹 ) ) 〉 ∈ ( 𝑋 𝐻 𝑍 ) ) |
24 |
6 23
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 · 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |