Metamath Proof Explorer


Theorem coapm

Description: Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses coapm.o · = ( compa𝐶 )
coapm.a 𝐴 = ( Arrow ‘ 𝐶 )
Assertion coapm · ∈ ( 𝐴pm ( 𝐴 × 𝐴 ) )

Proof

Step Hyp Ref Expression
1 coapm.o · = ( compa𝐶 )
2 coapm.a 𝐴 = ( Arrow ‘ 𝐶 )
3 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
4 1 2 3 coafval · = ( 𝑔𝐴 , 𝑓 ∈ { 𝐴 ∣ ( coda ) = ( doma𝑔 ) } ↦ ⟨ ( doma𝑓 ) , ( coda𝑔 ) , ( ( 2nd𝑔 ) ( ⟨ ( doma𝑓 ) , ( doma𝑔 ) ⟩ ( comp ‘ 𝐶 ) ( coda𝑔 ) ) ( 2nd𝑓 ) ) ⟩ )
5 4 mpofun Fun ·
6 funfn ( Fun ·· Fn dom · )
7 5 6 mpbi · Fn dom ·
8 1 2 dmcoass dom · ⊆ ( 𝐴 × 𝐴 )
9 8 sseli ( 𝑧 ∈ dom ·𝑧 ∈ ( 𝐴 × 𝐴 ) )
10 1st2nd2 ( 𝑧 ∈ ( 𝐴 × 𝐴 ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
11 9 10 syl ( 𝑧 ∈ dom ·𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
12 11 fveq2d ( 𝑧 ∈ dom · → ( ·𝑧 ) = ( · ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ) )
13 df-ov ( ( 1st𝑧 ) · ( 2nd𝑧 ) ) = ( · ‘ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
14 12 13 eqtr4di ( 𝑧 ∈ dom · → ( ·𝑧 ) = ( ( 1st𝑧 ) · ( 2nd𝑧 ) ) )
15 eqid ( Homa𝐶 ) = ( Homa𝐶 )
16 2 15 homarw ( ( doma ‘ ( 2nd𝑧 ) ) ( Homa𝐶 ) ( coda ‘ ( 1st𝑧 ) ) ) ⊆ 𝐴
17 id ( 𝑧 ∈ dom ·𝑧 ∈ dom · )
18 11 17 eqeltrrd ( 𝑧 ∈ dom · → ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∈ dom · )
19 df-br ( ( 1st𝑧 ) dom · ( 2nd𝑧 ) ↔ ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∈ dom · )
20 18 19 sylibr ( 𝑧 ∈ dom · → ( 1st𝑧 ) dom · ( 2nd𝑧 ) )
21 1 2 eldmcoa ( ( 1st𝑧 ) dom · ( 2nd𝑧 ) ↔ ( ( 2nd𝑧 ) ∈ 𝐴 ∧ ( 1st𝑧 ) ∈ 𝐴 ∧ ( coda ‘ ( 2nd𝑧 ) ) = ( doma ‘ ( 1st𝑧 ) ) ) )
22 20 21 sylib ( 𝑧 ∈ dom · → ( ( 2nd𝑧 ) ∈ 𝐴 ∧ ( 1st𝑧 ) ∈ 𝐴 ∧ ( coda ‘ ( 2nd𝑧 ) ) = ( doma ‘ ( 1st𝑧 ) ) ) )
23 22 simp1d ( 𝑧 ∈ dom · → ( 2nd𝑧 ) ∈ 𝐴 )
24 2 15 arwhoma ( ( 2nd𝑧 ) ∈ 𝐴 → ( 2nd𝑧 ) ∈ ( ( doma ‘ ( 2nd𝑧 ) ) ( Homa𝐶 ) ( coda ‘ ( 2nd𝑧 ) ) ) )
25 23 24 syl ( 𝑧 ∈ dom · → ( 2nd𝑧 ) ∈ ( ( doma ‘ ( 2nd𝑧 ) ) ( Homa𝐶 ) ( coda ‘ ( 2nd𝑧 ) ) ) )
26 22 simp3d ( 𝑧 ∈ dom · → ( coda ‘ ( 2nd𝑧 ) ) = ( doma ‘ ( 1st𝑧 ) ) )
27 26 oveq2d ( 𝑧 ∈ dom · → ( ( doma ‘ ( 2nd𝑧 ) ) ( Homa𝐶 ) ( coda ‘ ( 2nd𝑧 ) ) ) = ( ( doma ‘ ( 2nd𝑧 ) ) ( Homa𝐶 ) ( doma ‘ ( 1st𝑧 ) ) ) )
28 25 27 eleqtrd ( 𝑧 ∈ dom · → ( 2nd𝑧 ) ∈ ( ( doma ‘ ( 2nd𝑧 ) ) ( Homa𝐶 ) ( doma ‘ ( 1st𝑧 ) ) ) )
29 22 simp2d ( 𝑧 ∈ dom · → ( 1st𝑧 ) ∈ 𝐴 )
30 2 15 arwhoma ( ( 1st𝑧 ) ∈ 𝐴 → ( 1st𝑧 ) ∈ ( ( doma ‘ ( 1st𝑧 ) ) ( Homa𝐶 ) ( coda ‘ ( 1st𝑧 ) ) ) )
31 29 30 syl ( 𝑧 ∈ dom · → ( 1st𝑧 ) ∈ ( ( doma ‘ ( 1st𝑧 ) ) ( Homa𝐶 ) ( coda ‘ ( 1st𝑧 ) ) ) )
32 1 15 28 31 coahom ( 𝑧 ∈ dom · → ( ( 1st𝑧 ) · ( 2nd𝑧 ) ) ∈ ( ( doma ‘ ( 2nd𝑧 ) ) ( Homa𝐶 ) ( coda ‘ ( 1st𝑧 ) ) ) )
33 16 32 sseldi ( 𝑧 ∈ dom · → ( ( 1st𝑧 ) · ( 2nd𝑧 ) ) ∈ 𝐴 )
34 14 33 eqeltrd ( 𝑧 ∈ dom · → ( ·𝑧 ) ∈ 𝐴 )
35 34 rgen 𝑧 ∈ dom · ( ·𝑧 ) ∈ 𝐴
36 ffnfv ( · : dom ·𝐴 ↔ ( · Fn dom · ∧ ∀ 𝑧 ∈ dom · ( ·𝑧 ) ∈ 𝐴 ) )
37 7 35 36 mpbir2an · : dom ·𝐴
38 2 fvexi 𝐴 ∈ V
39 38 38 xpex ( 𝐴 × 𝐴 ) ∈ V
40 38 39 elpm2 ( · ∈ ( 𝐴pm ( 𝐴 × 𝐴 ) ) ↔ ( · : dom ·𝐴 ∧ dom · ⊆ ( 𝐴 × 𝐴 ) ) )
41 37 8 40 mpbir2an · ∈ ( 𝐴pm ( 𝐴 × 𝐴 ) )