Step |
Hyp |
Ref |
Expression |
1 |
|
arwlid.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
2 |
|
arwlid.o |
⊢ · = ( compa ‘ 𝐶 ) |
3 |
|
arwlid.a |
⊢ 1 = ( Ida ‘ 𝐶 ) |
4 |
|
arwlid.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
1
|
homarcl |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
8 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
9 |
1 5
|
homarcl2 |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
11 |
10
|
simprd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
12 |
3 5 7 8 11
|
ida2 |
⊢ ( 𝜑 → ( 2nd ‘ ( 1 ‘ 𝑌 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1 ‘ 𝑌 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 2nd ‘ 𝐹 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 2nd ‘ 𝐹 ) ) ) |
14 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
15 |
10
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
16 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
17 |
1 14
|
homahom |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 2nd ‘ 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
18 |
4 17
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
19 |
5 14 8 7 15 16 11 18
|
catlid |
⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 2nd ‘ 𝐹 ) ) = ( 2nd ‘ 𝐹 ) ) |
20 |
13 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1 ‘ 𝑌 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 2nd ‘ 𝐹 ) ) = ( 2nd ‘ 𝐹 ) ) |
21 |
20
|
oteq3d |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 , ( ( 2nd ‘ ( 1 ‘ 𝑌 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 2nd ‘ 𝐹 ) ) 〉 = 〈 𝑋 , 𝑌 , ( 2nd ‘ 𝐹 ) 〉 ) |
22 |
3 5 7 11 1
|
idahom |
⊢ ( 𝜑 → ( 1 ‘ 𝑌 ) ∈ ( 𝑌 𝐻 𝑌 ) ) |
23 |
2 1 4 22 16
|
coaval |
⊢ ( 𝜑 → ( ( 1 ‘ 𝑌 ) · 𝐹 ) = 〈 𝑋 , 𝑌 , ( ( 2nd ‘ ( 1 ‘ 𝑌 ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 2nd ‘ 𝐹 ) ) 〉 ) |
24 |
1
|
homadmcd |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐹 = 〈 𝑋 , 𝑌 , ( 2nd ‘ 𝐹 ) 〉 ) |
25 |
4 24
|
syl |
⊢ ( 𝜑 → 𝐹 = 〈 𝑋 , 𝑌 , ( 2nd ‘ 𝐹 ) 〉 ) |
26 |
21 23 25
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 1 ‘ 𝑌 ) · 𝐹 ) = 𝐹 ) |