Metamath Proof Explorer
Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
arwrcl.a |
⊢ 𝐴 = ( Arrow ‘ 𝐶 ) |
|
|
arwhoma.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
|
Assertion |
homarw |
⊢ ( 𝑋 𝐻 𝑌 ) ⊆ 𝐴 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
arwrcl.a |
⊢ 𝐴 = ( Arrow ‘ 𝐶 ) |
| 2 |
|
arwhoma.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
| 3 |
|
ovssunirn |
⊢ ( 𝑋 𝐻 𝑌 ) ⊆ ∪ ran 𝐻 |
| 4 |
1 2
|
arwval |
⊢ 𝐴 = ∪ ran 𝐻 |
| 5 |
3 4
|
sseqtrri |
⊢ ( 𝑋 𝐻 𝑌 ) ⊆ 𝐴 |