| Step | Hyp | Ref | Expression | 
						
							| 1 |  | arwval.a | ⊢ 𝐴  =  ( Arrow ‘ 𝐶 ) | 
						
							| 2 |  | arwval.h | ⊢ 𝐻  =  ( Homa ‘ 𝐶 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑐  =  𝐶  →  ( Homa ‘ 𝑐 )  =  ( Homa ‘ 𝐶 ) ) | 
						
							| 4 | 3 2 | eqtr4di | ⊢ ( 𝑐  =  𝐶  →  ( Homa ‘ 𝑐 )  =  𝐻 ) | 
						
							| 5 | 4 | rneqd | ⊢ ( 𝑐  =  𝐶  →  ran  ( Homa ‘ 𝑐 )  =  ran  𝐻 ) | 
						
							| 6 | 5 | unieqd | ⊢ ( 𝑐  =  𝐶  →  ∪  ran  ( Homa ‘ 𝑐 )  =  ∪  ran  𝐻 ) | 
						
							| 7 |  | df-arw | ⊢ Arrow  =  ( 𝑐  ∈  Cat  ↦  ∪  ran  ( Homa ‘ 𝑐 ) ) | 
						
							| 8 | 2 | fvexi | ⊢ 𝐻  ∈  V | 
						
							| 9 | 8 | rnex | ⊢ ran  𝐻  ∈  V | 
						
							| 10 | 9 | uniex | ⊢ ∪  ran  𝐻  ∈  V | 
						
							| 11 | 6 7 10 | fvmpt | ⊢ ( 𝐶  ∈  Cat  →  ( Arrow ‘ 𝐶 )  =  ∪  ran  𝐻 ) | 
						
							| 12 | 7 | fvmptndm | ⊢ ( ¬  𝐶  ∈  Cat  →  ( Arrow ‘ 𝐶 )  =  ∅ ) | 
						
							| 13 |  | df-homa | ⊢ Homa  =  ( 𝑐  ∈  Cat  ↦  ( 𝑥  ∈  ( ( Base ‘ 𝑐 )  ×  ( Base ‘ 𝑐 ) )  ↦  ( { 𝑥 }  ×  ( ( Hom  ‘ 𝑐 ) ‘ 𝑥 ) ) ) ) | 
						
							| 14 | 13 | fvmptndm | ⊢ ( ¬  𝐶  ∈  Cat  →  ( Homa ‘ 𝐶 )  =  ∅ ) | 
						
							| 15 | 2 14 | eqtrid | ⊢ ( ¬  𝐶  ∈  Cat  →  𝐻  =  ∅ ) | 
						
							| 16 | 15 | rneqd | ⊢ ( ¬  𝐶  ∈  Cat  →  ran  𝐻  =  ran  ∅ ) | 
						
							| 17 |  | rn0 | ⊢ ran  ∅  =  ∅ | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( ¬  𝐶  ∈  Cat  →  ran  𝐻  =  ∅ ) | 
						
							| 19 | 18 | unieqd | ⊢ ( ¬  𝐶  ∈  Cat  →  ∪  ran  𝐻  =  ∪  ∅ ) | 
						
							| 20 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( ¬  𝐶  ∈  Cat  →  ∪  ran  𝐻  =  ∅ ) | 
						
							| 22 | 12 21 | eqtr4d | ⊢ ( ¬  𝐶  ∈  Cat  →  ( Arrow ‘ 𝐶 )  =  ∪  ran  𝐻 ) | 
						
							| 23 | 11 22 | pm2.61i | ⊢ ( Arrow ‘ 𝐶 )  =  ∪  ran  𝐻 | 
						
							| 24 | 1 23 | eqtri | ⊢ 𝐴  =  ∪  ran  𝐻 |