Metamath Proof Explorer


Theorem arwval

Description: The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwval.a A=ArrowC
arwval.h H=HomaC
Assertion arwval A=ranH

Proof

Step Hyp Ref Expression
1 arwval.a A=ArrowC
2 arwval.h H=HomaC
3 fveq2 c=CHomac=HomaC
4 3 2 eqtr4di c=CHomac=H
5 4 rneqd c=CranHomac=ranH
6 5 unieqd c=CranHomac=ranH
7 df-arw Arrow=cCatranHomac
8 2 fvexi HV
9 8 rnex ranHV
10 9 uniex ranHV
11 6 7 10 fvmpt CCatArrowC=ranH
12 7 fvmptndm ¬CCatArrowC=
13 df-homa Homa=cCatxBasec×Basecx×Homcx
14 13 fvmptndm ¬CCatHomaC=
15 2 14 eqtrid ¬CCatH=
16 15 rneqd ¬CCatranH=ran
17 rn0 ran=
18 16 17 eqtrdi ¬CCatranH=
19 18 unieqd ¬CCatranH=
20 uni0 =
21 19 20 eqtrdi ¬CCatranH=
22 12 21 eqtr4d ¬CCatArrowC=ranH
23 11 22 pm2.61i ArrowC=ranH
24 1 23 eqtri A=ranH