Step |
Hyp |
Ref |
Expression |
1 |
|
homdmcoa.o |
|- .x. = ( compA ` C ) |
2 |
|
homdmcoa.h |
|- H = ( HomA ` C ) |
3 |
|
homdmcoa.f |
|- ( ph -> F e. ( X H Y ) ) |
4 |
|
homdmcoa.g |
|- ( ph -> G e. ( Y H Z ) ) |
5 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
6 |
1 2 3 4 5
|
coaval |
|- ( ph -> ( G .x. F ) = <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) >. ) |
7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
8 |
2
|
homarcl |
|- ( F e. ( X H Y ) -> C e. Cat ) |
9 |
3 8
|
syl |
|- ( ph -> C e. Cat ) |
10 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
11 |
2 7
|
homarcl2 |
|- ( F e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
12 |
3 11
|
syl |
|- ( ph -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
13 |
12
|
simpld |
|- ( ph -> X e. ( Base ` C ) ) |
14 |
2 7
|
homarcl2 |
|- ( G e. ( Y H Z ) -> ( Y e. ( Base ` C ) /\ Z e. ( Base ` C ) ) ) |
15 |
4 14
|
syl |
|- ( ph -> ( Y e. ( Base ` C ) /\ Z e. ( Base ` C ) ) ) |
16 |
15
|
simprd |
|- ( ph -> Z e. ( Base ` C ) ) |
17 |
12
|
simprd |
|- ( ph -> Y e. ( Base ` C ) ) |
18 |
2 10
|
homahom |
|- ( F e. ( X H Y ) -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) |
19 |
3 18
|
syl |
|- ( ph -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) |
20 |
2 10
|
homahom |
|- ( G e. ( Y H Z ) -> ( 2nd ` G ) e. ( Y ( Hom ` C ) Z ) ) |
21 |
4 20
|
syl |
|- ( ph -> ( 2nd ` G ) e. ( Y ( Hom ` C ) Z ) ) |
22 |
7 10 5 9 13 17 16 19 21
|
catcocl |
|- ( ph -> ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) e. ( X ( Hom ` C ) Z ) ) |
23 |
2 7 9 10 13 16 22
|
elhomai2 |
|- ( ph -> <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) >. e. ( X H Z ) ) |
24 |
6 23
|
eqeltrd |
|- ( ph -> ( G .x. F ) e. ( X H Z ) ) |