| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homdmcoa.o |
|- .x. = ( compA ` C ) |
| 2 |
|
homdmcoa.h |
|- H = ( HomA ` C ) |
| 3 |
|
homdmcoa.f |
|- ( ph -> F e. ( X H Y ) ) |
| 4 |
|
homdmcoa.g |
|- ( ph -> G e. ( Y H Z ) ) |
| 5 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 6 |
1 2 3 4 5
|
coaval |
|- ( ph -> ( G .x. F ) = <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) >. ) |
| 7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 8 |
2
|
homarcl |
|- ( F e. ( X H Y ) -> C e. Cat ) |
| 9 |
3 8
|
syl |
|- ( ph -> C e. Cat ) |
| 10 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 11 |
2 7
|
homarcl2 |
|- ( F e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 12 |
3 11
|
syl |
|- ( ph -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 13 |
12
|
simpld |
|- ( ph -> X e. ( Base ` C ) ) |
| 14 |
2 7
|
homarcl2 |
|- ( G e. ( Y H Z ) -> ( Y e. ( Base ` C ) /\ Z e. ( Base ` C ) ) ) |
| 15 |
4 14
|
syl |
|- ( ph -> ( Y e. ( Base ` C ) /\ Z e. ( Base ` C ) ) ) |
| 16 |
15
|
simprd |
|- ( ph -> Z e. ( Base ` C ) ) |
| 17 |
12
|
simprd |
|- ( ph -> Y e. ( Base ` C ) ) |
| 18 |
2 10
|
homahom |
|- ( F e. ( X H Y ) -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) |
| 19 |
3 18
|
syl |
|- ( ph -> ( 2nd ` F ) e. ( X ( Hom ` C ) Y ) ) |
| 20 |
2 10
|
homahom |
|- ( G e. ( Y H Z ) -> ( 2nd ` G ) e. ( Y ( Hom ` C ) Z ) ) |
| 21 |
4 20
|
syl |
|- ( ph -> ( 2nd ` G ) e. ( Y ( Hom ` C ) Z ) ) |
| 22 |
7 10 5 9 13 17 16 19 21
|
catcocl |
|- ( ph -> ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) e. ( X ( Hom ` C ) Z ) ) |
| 23 |
2 7 9 10 13 16 22
|
elhomai2 |
|- ( ph -> <. X , Z , ( ( 2nd ` G ) ( <. X , Y >. ( comp ` C ) Z ) ( 2nd ` F ) ) >. e. ( X H Z ) ) |
| 24 |
6 23
|
eqeltrd |
|- ( ph -> ( G .x. F ) e. ( X H Z ) ) |