Metamath Proof Explorer


Theorem coafval

Description: The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses coafval.o ·˙=compaC
coafval.a A=ArrowC
coafval.x ˙=compC
Assertion coafval ·˙=gA,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf

Proof

Step Hyp Ref Expression
1 coafval.o ·˙=compaC
2 coafval.a A=ArrowC
3 coafval.x ˙=compC
4 fveq2 c=CArrowc=ArrowC
5 4 2 eqtr4di c=CArrowc=A
6 5 rabeqdv c=ChArrowc|codah=domag=hA|codah=domag
7 fveq2 c=Ccompc=compC
8 7 3 eqtr4di c=Ccompc=˙
9 8 oveqd c=Cdomafdomagcompccodag=domafdomag˙codag
10 9 oveqd c=C2ndgdomafdomagcompccodag2ndf=2ndgdomafdomag˙codag2ndf
11 10 oteq3d c=Cdomafcodag2ndgdomafdomagcompccodag2ndf=domafcodag2ndgdomafdomag˙codag2ndf
12 5 6 11 mpoeq123dv c=CgArrowc,fhArrowc|codah=domagdomafcodag2ndgdomafdomagcompccodag2ndf=gA,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf
13 df-coa compa=cCatgArrowc,fhArrowc|codah=domagdomafcodag2ndgdomafdomagcompccodag2ndf
14 2 fvexi AV
15 14 rabex hA|codah=domagV
16 14 15 mpoex gA,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndfV
17 12 13 16 fvmpt CCatcompaC=gA,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf
18 13 fvmptndm ¬CCatcompaC=
19 2 arwrcl fACCat
20 19 con3i ¬CCat¬fA
21 20 eq0rdv ¬CCatA=
22 eqidd ¬CCathA|codah=domag=hA|codah=domag
23 eqidd ¬CCatdomafcodag2ndgdomafdomag˙codag2ndf=domafcodag2ndgdomafdomag˙codag2ndf
24 21 22 23 mpoeq123dv ¬CCatgA,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf=g,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf
25 mpo0 g,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf=
26 24 25 eqtrdi ¬CCatgA,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf=
27 18 26 eqtr4d ¬CCatcompaC=gA,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf
28 17 27 pm2.61i compaC=gA,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf
29 1 28 eqtri ·˙=gA,fhA|codah=domagdomafcodag2ndgdomafdomag˙codag2ndf