| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homdmcoa.o |
⊢ · = ( compa ‘ 𝐶 ) |
| 2 |
|
homdmcoa.h |
⊢ 𝐻 = ( Homa ‘ 𝐶 ) |
| 3 |
|
homdmcoa.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 4 |
|
homdmcoa.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
| 5 |
|
eqid |
⊢ ( Arrow ‘ 𝐶 ) = ( Arrow ‘ 𝐶 ) |
| 6 |
5 2
|
homarw |
⊢ ( 𝑋 𝐻 𝑌 ) ⊆ ( Arrow ‘ 𝐶 ) |
| 7 |
6 3
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( Arrow ‘ 𝐶 ) ) |
| 8 |
5 2
|
homarw |
⊢ ( 𝑌 𝐻 𝑍 ) ⊆ ( Arrow ‘ 𝐶 ) |
| 9 |
8 4
|
sselid |
⊢ ( 𝜑 → 𝐺 ∈ ( Arrow ‘ 𝐶 ) ) |
| 10 |
2
|
homacd |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( coda ‘ 𝐹 ) = 𝑌 ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → ( coda ‘ 𝐹 ) = 𝑌 ) |
| 12 |
2
|
homadm |
⊢ ( 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) → ( doma ‘ 𝐺 ) = 𝑌 ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → ( doma ‘ 𝐺 ) = 𝑌 ) |
| 14 |
11 13
|
eqtr4d |
⊢ ( 𝜑 → ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) |
| 15 |
1 5
|
eldmcoa |
⊢ ( 𝐺 dom · 𝐹 ↔ ( 𝐹 ∈ ( Arrow ‘ 𝐶 ) ∧ 𝐺 ∈ ( Arrow ‘ 𝐶 ) ∧ ( coda ‘ 𝐹 ) = ( doma ‘ 𝐺 ) ) ) |
| 16 |
7 9 14 15
|
syl3anbrc |
⊢ ( 𝜑 → 𝐺 dom · 𝐹 ) |