Metamath Proof Explorer


Theorem homdmcoa

Description: If F : X --> Y and G : Y --> Z , then G and F are composable. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homdmcoa.o · = ( compa𝐶 )
homdmcoa.h 𝐻 = ( Homa𝐶 )
homdmcoa.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
homdmcoa.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
Assertion homdmcoa ( 𝜑𝐺 dom · 𝐹 )

Proof

Step Hyp Ref Expression
1 homdmcoa.o · = ( compa𝐶 )
2 homdmcoa.h 𝐻 = ( Homa𝐶 )
3 homdmcoa.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
4 homdmcoa.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
5 eqid ( Arrow ‘ 𝐶 ) = ( Arrow ‘ 𝐶 )
6 5 2 homarw ( 𝑋 𝐻 𝑌 ) ⊆ ( Arrow ‘ 𝐶 )
7 6 3 sseldi ( 𝜑𝐹 ∈ ( Arrow ‘ 𝐶 ) )
8 5 2 homarw ( 𝑌 𝐻 𝑍 ) ⊆ ( Arrow ‘ 𝐶 )
9 8 4 sseldi ( 𝜑𝐺 ∈ ( Arrow ‘ 𝐶 ) )
10 2 homacd ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( coda𝐹 ) = 𝑌 )
11 3 10 syl ( 𝜑 → ( coda𝐹 ) = 𝑌 )
12 2 homadm ( 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) → ( doma𝐺 ) = 𝑌 )
13 4 12 syl ( 𝜑 → ( doma𝐺 ) = 𝑌 )
14 11 13 eqtr4d ( 𝜑 → ( coda𝐹 ) = ( doma𝐺 ) )
15 1 5 eldmcoa ( 𝐺 dom · 𝐹 ↔ ( 𝐹 ∈ ( Arrow ‘ 𝐶 ) ∧ 𝐺 ∈ ( Arrow ‘ 𝐶 ) ∧ ( coda𝐹 ) = ( doma𝐺 ) ) )
16 7 9 14 15 syl3anbrc ( 𝜑𝐺 dom · 𝐹 )