Metamath Proof Explorer


Theorem dmcoass

Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses coafval.o ·˙=compaC
coafval.a A=ArrowC
Assertion dmcoass dom·˙A×A

Proof

Step Hyp Ref Expression
1 coafval.o ·˙=compaC
2 coafval.a A=ArrowC
3 eqid compC=compC
4 1 2 3 coafval ·˙=gA,fhA|codah=domagdomafcodag2ndgdomafdomagcompCcodag2ndf
5 4 dmmpossx dom·˙gAg×hA|codah=domag
6 iunss gAg×hA|codah=domagA×AgAg×hA|codah=domagA×A
7 snssi gAgA
8 ssrab2 hA|codah=domagA
9 xpss12 gAhA|codah=domagAg×hA|codah=domagA×A
10 7 8 9 sylancl gAg×hA|codah=domagA×A
11 6 10 mprgbir gAg×hA|codah=domagA×A
12 5 11 sstri dom·˙A×A