Metamath Proof Explorer


Theorem dmcoass

Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses coafval.o · ˙ = comp a C
coafval.a A = Arrow C
Assertion dmcoass dom · ˙ A × A

Proof

Step Hyp Ref Expression
1 coafval.o · ˙ = comp a C
2 coafval.a A = Arrow C
3 eqid comp C = comp C
4 1 2 3 coafval · ˙ = g A , f h A | cod a h = dom a g dom a f cod a g 2 nd g dom a f dom a g comp C cod a g 2 nd f
5 4 dmmpossx dom · ˙ g A g × h A | cod a h = dom a g
6 iunss g A g × h A | cod a h = dom a g A × A g A g × h A | cod a h = dom a g A × A
7 snssi g A g A
8 ssrab2 h A | cod a h = dom a g A
9 xpss12 g A h A | cod a h = dom a g A g × h A | cod a h = dom a g A × A
10 7 8 9 sylancl g A g × h A | cod a h = dom a g A × A
11 6 10 mprgbir g A g × h A | cod a h = dom a g A × A
12 5 11 sstri dom · ˙ A × A