Metamath Proof Explorer


Theorem idaf

Description: The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i I = Id a C
idafval.b B = Base C
idafval.c φ C Cat
idaf.a A = Arrow C
Assertion idaf φ I : B A

Proof

Step Hyp Ref Expression
1 idafval.i I = Id a C
2 idafval.b B = Base C
3 idafval.c φ C Cat
4 idaf.a A = Arrow C
5 otex x x Id C x V
6 5 a1i φ x B x x Id C x V
7 eqid Id C = Id C
8 1 2 3 7 idafval φ I = x B x x Id C x
9 eqid Hom a C = Hom a C
10 4 9 homarw x Hom a C x A
11 3 adantr φ x B C Cat
12 simpr φ x B x B
13 1 2 11 12 9 idahom φ x B I x x Hom a C x
14 10 13 sselid φ x B I x A
15 6 8 14 fmpt2d φ I : B A