Step |
Hyp |
Ref |
Expression |
1 |
|
idafval.i |
⊢ 𝐼 = ( Ida ‘ 𝐶 ) |
2 |
|
idafval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
idafval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
idaf.a |
⊢ 𝐴 = ( Arrow ‘ 𝐶 ) |
5 |
|
otex |
⊢ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ∈ V |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ∈ V ) |
7 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
8 |
1 2 3 7
|
idafval |
⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 ↦ 〈 𝑥 , 𝑥 , ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) 〉 ) ) |
9 |
|
eqid |
⊢ ( Homa ‘ 𝐶 ) = ( Homa ‘ 𝐶 ) |
10 |
4 9
|
homarw |
⊢ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑥 ) ⊆ 𝐴 |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
13 |
1 2 11 12 9
|
idahom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑥 ) ∈ ( 𝑥 ( Homa ‘ 𝐶 ) 𝑥 ) ) |
14 |
10 13
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) |
15 |
6 8 14
|
fmpt2d |
⊢ ( 𝜑 → 𝐼 : 𝐵 ⟶ 𝐴 ) |