Metamath Proof Explorer


Theorem idinxpres

Description: The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009) (Proof shortened by Peter Mazsa, 9-Sep-2022) Generalize statement from cartesian square (now idinxpresid ) to cartesian product. (Revised by BJ, 23-Dec-2023)

Ref Expression
Assertion idinxpres
|- ( _I i^i ( A X. B ) ) = ( _I |` ( A i^i B ) )

Proof

Step Hyp Ref Expression
1 elidinxp
 |-  ( x e. ( _I i^i ( A X. B ) ) <-> E. y e. ( A i^i B ) x = <. y , y >. )
2 elrid
 |-  ( x e. ( _I |` ( A i^i B ) ) <-> E. y e. ( A i^i B ) x = <. y , y >. )
3 1 2 bitr4i
 |-  ( x e. ( _I i^i ( A X. B ) ) <-> x e. ( _I |` ( A i^i B ) ) )
4 3 eqriv
 |-  ( _I i^i ( A X. B ) ) = ( _I |` ( A i^i B ) )