| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							risset | 
							 |-  ( x e. B <-> E. y e. B y = x )  | 
						
						
							| 2 | 
							
								1
							 | 
							anbi2ci | 
							 |-  ( ( x e. B /\ C = <. x , x >. ) <-> ( C = <. x , x >. /\ E. y e. B y = x ) )  | 
						
						
							| 3 | 
							
								
							 | 
							r19.42v | 
							 |-  ( E. y e. B ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , x >. /\ E. y e. B y = x ) )  | 
						
						
							| 4 | 
							
								
							 | 
							opeq2 | 
							 |-  ( x = y -> <. x , x >. = <. x , y >. )  | 
						
						
							| 5 | 
							
								4
							 | 
							equcoms | 
							 |-  ( y = x -> <. x , x >. = <. x , y >. )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq2d | 
							 |-  ( y = x -> ( C = <. x , x >. <-> C = <. x , y >. ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							pm5.32ri | 
							 |-  ( ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , y >. /\ y = x ) )  | 
						
						
							| 8 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 9 | 
							
								8
							 | 
							ideq | 
							 |-  ( x _I y <-> x = y )  | 
						
						
							| 10 | 
							
								
							 | 
							df-br | 
							 |-  ( x _I y <-> <. x , y >. e. _I )  | 
						
						
							| 11 | 
							
								
							 | 
							equcom | 
							 |-  ( x = y <-> y = x )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							3bitr3i | 
							 |-  ( <. x , y >. e. _I <-> y = x )  | 
						
						
							| 13 | 
							
								12
							 | 
							anbi2i | 
							 |-  ( ( C = <. x , y >. /\ <. x , y >. e. _I ) <-> ( C = <. x , y >. /\ y = x ) )  | 
						
						
							| 14 | 
							
								7 13
							 | 
							bitr4i | 
							 |-  ( ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , y >. /\ <. x , y >. e. _I ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexbii | 
							 |-  ( E. y e. B ( C = <. x , x >. /\ y = x ) <-> E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) )  | 
						
						
							| 16 | 
							
								2 3 15
							 | 
							3bitr2i | 
							 |-  ( ( x e. B /\ C = <. x , x >. ) <-> E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rexbii | 
							 |-  ( E. x e. A ( x e. B /\ C = <. x , x >. ) <-> E. x e. A E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) )  | 
						
						
							| 18 | 
							
								
							 | 
							rexin | 
							 |-  ( E. x e. ( A i^i B ) C = <. x , x >. <-> E. x e. A ( x e. B /\ C = <. x , x >. ) )  | 
						
						
							| 19 | 
							
								
							 | 
							elinxp | 
							 |-  ( C e. ( _I i^i ( A X. B ) ) <-> E. x e. A E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) )  | 
						
						
							| 20 | 
							
								17 18 19
							 | 
							3bitr4ri | 
							 |-  ( C e. ( _I i^i ( A X. B ) ) <-> E. x e. ( A i^i B ) C = <. x , x >. )  |