Metamath Proof Explorer


Theorem rexin

Description: Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018)

Ref Expression
Assertion rexin
|- ( E. x e. ( A i^i B ) ph <-> E. x e. A ( x e. B /\ ph ) )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
2 1 anbi1i
 |-  ( ( x e. ( A i^i B ) /\ ph ) <-> ( ( x e. A /\ x e. B ) /\ ph ) )
3 anass
 |-  ( ( ( x e. A /\ x e. B ) /\ ph ) <-> ( x e. A /\ ( x e. B /\ ph ) ) )
4 2 3 bitri
 |-  ( ( x e. ( A i^i B ) /\ ph ) <-> ( x e. A /\ ( x e. B /\ ph ) ) )
5 4 rexbii2
 |-  ( E. x e. ( A i^i B ) ph <-> E. x e. A ( x e. B /\ ph ) )