Description: Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rexin | |- ( E. x e. ( A i^i B ) ph <-> E. x e. A ( x e. B /\ ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
2 | 1 | anbi1i | |- ( ( x e. ( A i^i B ) /\ ph ) <-> ( ( x e. A /\ x e. B ) /\ ph ) ) |
3 | anass | |- ( ( ( x e. A /\ x e. B ) /\ ph ) <-> ( x e. A /\ ( x e. B /\ ph ) ) ) |
|
4 | 2 3 | bitri | |- ( ( x e. ( A i^i B ) /\ ph ) <-> ( x e. A /\ ( x e. B /\ ph ) ) ) |
5 | 4 | rexbii2 | |- ( E. x e. ( A i^i B ) ph <-> E. x e. A ( x e. B /\ ph ) ) |