Metamath Proof Explorer


Theorem idresssidinxp

Description: Condition for the identity restriction to be a subclass of identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018)

Ref Expression
Assertion idresssidinxp
|- ( A C_ B -> ( _I |` A ) C_ ( _I i^i ( A X. B ) ) )

Proof

Step Hyp Ref Expression
1 resss
 |-  ( _I |` A ) C_ _I
2 1 a1i
 |-  ( A C_ B -> ( _I |` A ) C_ _I )
3 idssxp
 |-  ( _I |` A ) C_ ( A X. A )
4 xpss2
 |-  ( A C_ B -> ( A X. A ) C_ ( A X. B ) )
5 3 4 sstrid
 |-  ( A C_ B -> ( _I |` A ) C_ ( A X. B ) )
6 2 5 ssind
 |-  ( A C_ B -> ( _I |` A ) C_ ( _I i^i ( A X. B ) ) )