Metamath Proof Explorer


Theorem idresssidinxp

Description: Condition for the identity restriction to be a subclass of identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018)

Ref Expression
Assertion idresssidinxp ( 𝐴𝐵 → ( I ↾ 𝐴 ) ⊆ ( I ∩ ( 𝐴 × 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 resss ( I ↾ 𝐴 ) ⊆ I
2 1 a1i ( 𝐴𝐵 → ( I ↾ 𝐴 ) ⊆ I )
3 idssxp ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 )
4 xpss2 ( 𝐴𝐵 → ( 𝐴 × 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) )
5 3 4 sstrid ( 𝐴𝐵 → ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐵 ) )
6 2 5 ssind ( 𝐴𝐵 → ( I ↾ 𝐴 ) ⊆ ( I ∩ ( 𝐴 × 𝐵 ) ) )