Metamath Proof Explorer


Theorem idreseqidinxp

Description: Condition for the identity restriction to be equal to the identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018)

Ref Expression
Assertion idreseqidinxp ( 𝐴𝐵 → ( I ∩ ( 𝐴 × 𝐵 ) ) = ( I ↾ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 inxpssres ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( I ↾ 𝐴 )
2 1 a1i ( 𝐴𝐵 → ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( I ↾ 𝐴 ) )
3 idresssidinxp ( 𝐴𝐵 → ( I ↾ 𝐴 ) ⊆ ( I ∩ ( 𝐴 × 𝐵 ) ) )
4 2 3 eqssd ( 𝐴𝐵 → ( I ∩ ( 𝐴 × 𝐵 ) ) = ( I ↾ 𝐴 ) )