Metamath Proof Explorer


Theorem extid

Description: Property of identity relation, see also extep , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 5-Jul-2019)

Ref Expression
Assertion extid ( 𝐴𝑉 → ( [ 𝐴 ] I = [ 𝐵 ] I ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cnvi I = I
2 1 eceq2i [ 𝐴 ] I = [ 𝐴 ] I
3 ecidsn [ 𝐴 ] I = { 𝐴 }
4 2 3 eqtri [ 𝐴 ] I = { 𝐴 }
5 1 eceq2i [ 𝐵 ] I = [ 𝐵 ] I
6 ecidsn [ 𝐵 ] I = { 𝐵 }
7 5 6 eqtri [ 𝐵 ] I = { 𝐵 }
8 4 7 eqeq12i ( [ 𝐴 ] I = [ 𝐵 ] I ↔ { 𝐴 } = { 𝐵 } )
9 sneqbg ( 𝐴𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) )
10 8 9 syl5bb ( 𝐴𝑉 → ( [ 𝐴 ] I = [ 𝐵 ] I ↔ 𝐴 = 𝐵 ) )