Metamath Proof Explorer
Description: Property of identity relation, see also extep , extssr and the comment
of df-ssr . (Contributed by Peter Mazsa, 5-Jul-2019)
|
|
Ref |
Expression |
|
Assertion |
extid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 ] ◡ I = [ 𝐵 ] ◡ I ↔ 𝐴 = 𝐵 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvi |
⊢ ◡ I = I |
| 2 |
1
|
eceq2i |
⊢ [ 𝐴 ] ◡ I = [ 𝐴 ] I |
| 3 |
|
ecidsn |
⊢ [ 𝐴 ] I = { 𝐴 } |
| 4 |
2 3
|
eqtri |
⊢ [ 𝐴 ] ◡ I = { 𝐴 } |
| 5 |
1
|
eceq2i |
⊢ [ 𝐵 ] ◡ I = [ 𝐵 ] I |
| 6 |
|
ecidsn |
⊢ [ 𝐵 ] I = { 𝐵 } |
| 7 |
5 6
|
eqtri |
⊢ [ 𝐵 ] ◡ I = { 𝐵 } |
| 8 |
4 7
|
eqeq12i |
⊢ ( [ 𝐴 ] ◡ I = [ 𝐵 ] ◡ I ↔ { 𝐴 } = { 𝐵 } ) |
| 9 |
|
sneqbg |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) ) |
| 10 |
8 9
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 ] ◡ I = [ 𝐵 ] ◡ I ↔ 𝐴 = 𝐵 ) ) |