Metamath Proof Explorer


Theorem extid

Description: Property of identity relation, see also extep , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 5-Jul-2019)

Ref Expression
Assertion extid AVAI-1=BI-1A=B

Proof

Step Hyp Ref Expression
1 cnvi I-1=I
2 1 eceq2i AI-1=AI
3 ecidsn AI=A
4 2 3 eqtri AI-1=A
5 1 eceq2i BI-1=BI
6 ecidsn BI=B
7 5 6 eqtri BI-1=B
8 4 7 eqeq12i AI-1=BI-1A=B
9 sneqbg AVA=BA=B
10 8 9 bitrid AVAI-1=BI-1A=B